Skip to main content

Transport Properties of Polycrystalline Ni3Al

  • Chapter
Thermal Conductivity 18

Abstract

Recent advances in ductilizing the intermetallic compound Ni3A1 may lead to practical applications. These applications, which are based on the outstanding strength and oxidation resistance of the compound, also require physical property data. In this paper, the room-temperature electrical and thermal conductivities of annealed high purity specimens containing 74 to 76 at. % Ni are presented and compared to theoretical predictions. Residual (4.2 K) electrical resistivity data are also employed in the analysis and these results show a pronounced minimum at the stoichiometric composition. The data show that the thermal conductivity of this compound is quite sensitive to stoichiometry and, at room temperature, has a maximum value at about 74.8 at.% Ni. Calculated and experimentally derived phonon thermal conductivity values agree well, and indicate that this carrier is responsible for about 25% of the room temperature thermal conductivity. The electronic Lorenz function is essentially equal to the Sommerfeld value.

Research sponsored by the Division of Materials Science, U.S. Department of Energy, under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bieber, G. C. and Randebaugh, R. J., “Some Age Hardening Characteristics of Nickel-Chromium Alloys (Nickel-Rich) Containing Aluminum and Titanium,” p. 417 in Precipitation from Solid Solution, American Society for Metals, 1959.

    Google Scholar 

  2. Copley, S. M., and Kerr, B. H., Trans. AIME 239, 977 (1967).

    CAS  Google Scholar 

  3. Aoki, K., and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).

    CAS  Google Scholar 

  4. Liu, G. T., and Koch, C. C., “Development of Ductile Polycrystalline Ni3Al for High Temperature Applications,” p. 42 in Technical Aspects of Critical Materials Use by the Steel Industry, Vol. IIB, NBSIR 83-2679-2, Center for Materials Science, National Bureau of Standards, 1983.

    Google Scholar 

  5. Fluitman, J.H.J., Boom, R., de Chatel, P. F., Schinkel, C. J., Tilanns, J.L.L., and DeVries, B. R., J. Phys F: Metal. Phys. 109 (1973).

    Google Scholar 

  6. Williams, R. K., Graves, R. S., and Moore, J. P., ORNL-5313 (1978).

    Google Scholar 

  7. Dodd, C. V., Materials Evaluation XXVI, 33 (1968).

    Google Scholar 

  8. Jury, S. H., Arnurius, D., Godfrey, T. G., McElroy, D. L., and Moore, J. P., J. Franklin Inst. 298, 151 (1974).

    Article  Google Scholar 

  9. Williams, R. K., Yarbrough, D. W., Masey, J. W., Holder, T. K., and Graves, R. S., J. Appl. Phys. 52, 5167 (1981).

    Article  CAS  Google Scholar 

  10. Blatt, F. J., Physics of Electronic Conduction in Solids, McGraw-Hill, New York, NY (1968).

    Google Scholar 

  11. de Dood, W., and de Chatel, P. F., J. Phys. F: Metal. Phys. 3 1039 (1973).

    Article  Google Scholar 

  12. Kortekaas, T.F.M., and Franse, J., Phys. State. Sal. 40, 479 (1977).

    Article  CAS  Google Scholar 

  13. Williams, R. K., Graves, R. S., Hebble, T. L., McElroy, D. L., and Moore, J. P., Phys. Rev. B 26, 2932 (1982).

    Article  CAS  Google Scholar 

  14. Williams, R. K., Butler, W. H., Graves, R. S., and Moore, J. P., submitted to Physical Review B.

    Google Scholar 

  15. Callaway, J., Phys. Rev. 113, 1046 (1959).

    Article  CAS  Google Scholar 

  16. Roufosse, M., and Klemens, P. G., Phys. Rev. B 7 5379 (1973).

    Article  CAS  Google Scholar 

  17. Yarbrough, D. W., and Williams, R. K., 0RNL-5434 (1978).

    Google Scholar 

  18. Gschneidner, K. A., “Solid State Physics 16,” p. 275, F. Seitz and D. Turnbull, eds., Academic Press, Inc., New York, NY (1969).

    Google Scholar 

  19. Ho, C. Y., Ackerman, M. W., Wu, K. Y., Oh, S. G., and Havill, N. T., J. Phys. Chem. Ref. Data 7, 959 (1978).

    Article  CAS  Google Scholar 

  20. Williams, R. K., and Yarbrough, D. W., unpublished research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Purdue Research Foundation

About this chapter

Cite this chapter

Williams, R.K., Weaver, F.J., Graves, R.S. (1985). Transport Properties of Polycrystalline Ni3Al. In: Ashworth, T., Smith, D.R. (eds) Thermal Conductivity 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4916-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4916-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4918-1

  • Online ISBN: 978-1-4684-4916-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics