Skip to main content

Thermoregulation in Adult Seabirds

  • Chapter

Abstract

In simple terms, an animal is fit in an evolutionary sense, if it can reproduce, obtain food, and avoid becoming someone else’s food. Those animals leaving the most viable offspring at the least possible cost can be considered the most fit. In birds, a major portion of the cost of survival is spent in maintaining a relatively high (38–42°C) body temperature (homeothermy). The maintenance of a relatively constant body temperature is based on a balance between heat production (metabolism), heat transfer from the environment, and heat transfer to the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aschoff, J., and Pohl, H., 1970, Rhythmic variations in energy metabolism, Fed. Proc., 29:1541.

    PubMed  CAS  Google Scholar 

  • Bartholomew, G. A., 1964, The roles of physiology and behaviour in the maintenance of homeostasis in the desert environment, in: “Homeostasis and Feedback Mechanisms,” 18th symposium of The Soc. Exp. Biol., Cambridge Univ. Press, London.

    Google Scholar 

  • Bartholomew, G. A., 1966, The role of behavior in temperature regulation of the Masked Booby, Condor, 68: 523.

    Article  Google Scholar 

  • Bartholomew, G. A., and Dawson, W. R., 1979, Thermoregulatory behavior during incubation in Heermann’s Gulls, Physiol. Zool., 52: 422.

    Google Scholar 

  • Bernstein, M. H., 1971, Cutaneous and respiratory evaporation in Painted Quail Excalfactoria chinensis during ontogeny of thermoregulation, Comp. Biochem. Physiol., 38(A):611.

    Article  Google Scholar 

  • Boyd, J. C., and Sladen, J. L., 1971, Telemetry studies of the internal body temperatures of Adélie and emperor penguins at Cape Crozier, Ross Island, Antarctica, Auk, 88: 366.

    Google Scholar 

  • Budd, S. M., 1972, Thermoregulation in Black-capped Chickadees (Parus aticapillus), Amer. Zool., 12, Abstr. No. 402.

    Google Scholar 

  • Calder, W., 1974, Factors in the energy budget of mountain humming- birds, in: “Perspectives in Biophysical Ecology,” D. Gates and R. Schmerl, eds., Ecological Studies, Analysis and Synthesis, Springer-Verlag, New York.

    Google Scholar 

  • Calder, W. A., and King, J. R., 1974, Thermal and caloric relations in birds, in: “Avian Biology,” D. S. Farner and J. R. King, eds., Academic Press, New York.

    Google Scholar 

  • Cartwright, B. W., and Harrold, C. G., 1925, An outline of the principles of the natural selective absorption of radiant energy, Auk, 42: 94.

    Google Scholar 

  • Chappell, M. A., 1980, Insulation, radiation, and convection in small arctic mammals, J. Mammal., 61: 268.

    Article  Google Scholar 

  • Cole, L. C., 1943, Experiments on the toleration of high temperatures in lizards with reference to adaptive coloration, Ecology, 24: 94.

    Article  Google Scholar 

  • Dawson, W. R., and Hudson, J. W., 1970, Birds, in: “Comparative Physiology of Thermoregulation,” G. C. Whittow, ed., Academic Press, New York.

    Google Scholar 

  • DeJong, A. A., 1976, The influence of simulated solar radiation on the metabolic rate of white-crowned sparrows, Condor, 78: 174.

    Article  Google Scholar 

  • Dinsmore, J. J., 1972, Sooty tern behavior, Bull. Fla. State Mus. Biol. Sci., 16: 129.

    Google Scholar 

  • Farner, D. S., and Serventy, D. L., 1959, Body temperature and ontogeny of thermoregulation in the slender-billed shearwater, Condor, 61: 426.

    Article  Google Scholar 

  • Finch, V. A., Omi’el, R., Boxman, R., Shkolnik, A., and Taylor, C. R., 1980, Why black goats in hot deserts? Effects of coat color on heat exchanges of wild and domestic goats, Physiol. Zool., 53: 19.

    Google Scholar 

  • Grant, G., 1979, Avian incubation: egg temperature, nest humidity and behavioral thermoregulation in a hot environment, Ph.D. Diss., Univ. Calif., Los Angeles.

    Google Scholar 

  • Guard, C. L., and Murrish, D. E., 1974, Blood flow in the giant petrel, Antarctic J. U.S., 9: 101.

    Google Scholar 

  • Hamilton, W. J. II, and Heppner, F., 1967, Radiant solar energy and the function of black homeotherm pigmentation: an hypothesis, Science, 155: 196.

    Article  PubMed  Google Scholar 

  • Hand, J. L., Hunt, G. L., and Warner, M., 1981, Thermal stress and predation: Influences on the structure of a gull colony and possibly on breeding distributions, Condor, 83: 193.

    Article  Google Scholar 

  • Heppner, F., 1970, The metabolic significance of different absorption of radiant energy by black and white birds, Condor, 75: 50.

    Article  Google Scholar 

  • Howell, T. R., and Bartholomew, G. A., 1962, Temperature regulation in the Red-tailed Tropic Bird and the Red-footed Booby Bird, Condor, 64: 6.

    Article  Google Scholar 

  • Irving, L., 1955, Nocturnal decline in the temperature of birds in cold weather, Condor, 57: 362.

    Article  Google Scholar 

  • Irving, L., 1956, The usefulness of Scholander’s views on adaptive insulation of animals, Evolution, 10: 257.

    Google Scholar 

  • Irving, L., and Krog, J., 1955, Temperature of skin in the Arctic as a regulator of heat, J. Appl. Physiol., 7: 355.

    PubMed  CAS  Google Scholar 

  • Lasiewski, R. C., 1969, Physiological responses to heat stress in the Poorwill, Amer. J. Physiol., 217: 1504.

    PubMed  CAS  Google Scholar 

  • Lasiewski, R. C., Bernstein, M. H., and Ohmart, R. D., 1971, Cutaneous water loss in the roadrunner and poor-will, Condor, 73: 470.

    Article  Google Scholar 

  • Lasiewski, R. C., and Dawson, W. R., 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 13.

    Article  Google Scholar 

  • Lasiewski, R. C., and Seymour, R. S., 1972, Thermoregulatory responses to heat stress in four species of birds weighing approximately 40 grams, Physiol. Zool., 45: 106.

    Google Scholar 

  • LeMaho, Y., Delclitte, P., and Chatonnet, J., 1976, Thermoregulation in fasting emperor penguins under natural conditions, Amer. J. Physiol., 231: 913.

    CAS  Google Scholar 

  • Lipkin, M., and Hardy, D. D., 1954, Measurements of some thermal properties of human tissues, J. Appl., Physiol., 7:212.

    CAS  Google Scholar 

  • Lockley, R. M., 1983, “Flight of the Storm Petrel,” Paul S. Ericsson, Middlebury.

    Google Scholar 

  • Lustick, S. I., 1969, Bird energetics: effects of artificial radiation, Science, 163: 387.

    Article  PubMed  CAS  Google Scholar 

  • Lustick, S., Adam, M., and Hinko, A., 1980, Interaction between posture, color, and the radiative heatload in birds, Science, 208: 1052.

    Article  PubMed  CAS  Google Scholar 

  • Lustick, S., and Adams, J., 1977, Seasonal variation in the effects of wetting on the energetics and survival of starlings (Sturnus vulgaris), Comp. Biochem. Physiol., 56 (A): 173.

    Article  Google Scholar 

  • Lustick, S., Battersby, B., and Kelty, M., 1978, Behavioral thermoregulation: orientation toward the sun in herring gulls, Science, 200: 81.

    Article  Google Scholar 

  • Lustick, S., Battersby, B., and Kelty, M., 1979, Effects of insolation on juvenile herring gull energetics and behavior, Ecology, 60 (4): 673.

    Article  Google Scholar 

  • Lustick, S., Talbot, S., and Fox, E. L., 1970, Absorption of radiant energy in redwinged blackbirds (Agelaius phoeniceus), Condor, 72: 471.

    Article  Google Scholar 

  • MacMillen, R. E., Whittow, G. C., Christopher, E. A., and Ebisu, R. J., 1977, Oxygen consumption, evaporative water loss and body temperature in the sooty tern, Auk, 94: 72.

    Google Scholar 

  • Maher, W. J., 1962, Breeding biology of the snow petrel near Cape Hallett Antarctica, Condor, 64: 488.

    Article  Google Scholar 

  • Marder, J., 1973, Body temperature regulation in the brown-necked raven (Corvus corax ruficollis). II. Thermal changes in the plumage of ravens exposed to solar radiations, Comp. Biochem. Physiol., 45 (A): 431.

    Article  CAS  Google Scholar 

  • Mayer, L., Lustick, S., and Battersby, B., 1982, The importance of cavity roosting and hypothermia to the energy balance of the winter acclimatized Carolina Chickadee, Int. Biometeor, 23: 231.

    Article  Google Scholar 

  • Monteith, J. L., 1973, “Principles of environmental physics,” American Elsevier Publishing Co., New York.

    Google Scholar 

  • Mugaas, J. N., and King, J. R., 1981, Annual variation of daily energy expenditure by the black-billed magpie: A study of thermal and behavioral energetics, in: “Studies in Avian Biology,” No. 5, Cooper Ornithological Soc.

    Google Scholar 

  • Pinshow, B., Fedak, M. A., and Schmidt-Nielsen, K., 1974, Metabolic response of starving emperor penguins at low temperatures, Antarctic J. of U.S., 9: 96.

    Google Scholar 

  • Regal, P. J., 1975, The evolutionary origin of feathers, Quart. Rev. Biol., 50: 35.

    Article  PubMed  CAS  Google Scholar 

  • Scholander, P. F., 1956, Climatic rules, Evolution, 10: 339.

    Article  Google Scholar 

  • Scholander, P. F., Hock, R., Walters, V., Johnson, F., and Irving, L., 1950, Heat regulation in some arctic and tropical mammals and birds, Biol. Bull., 99: 237.

    Article  PubMed  CAS  Google Scholar 

  • Steen, J., and Steen, I. B., 1965, The importance of the legs in the thermoregulation of birds, Acta. Physiol. Scand., 63: 285.

    Article  PubMed  CAS  Google Scholar 

  • Stonehouse, B., 1967, The general biology and thermal balance of penguins, in: “Advances in Ecological Research,” J. B. Cragg, ed., Vol. 4, Academic Press, London.

    Google Scholar 

  • Tucker, V. A., 1972, Metabolism during flight in the Laughing Gull, Larus atricilla, Amer. J. Physiol., 222: 237.

    PubMed  CAS  Google Scholar 

  • Walsberg, G. E., Campbell, G. S., and King, J. R., 1978, Animal coat color and radiative heat gain: a re-evaluation, J. Comp. Physiol., 126: 211.

    Google Scholar 

  • Warham, J., 1971, Body temperature of petrels, Condor, 73: 214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Lustick, S. (1984). Thermoregulation in Adult Seabirds. In: Whittow, G.C., Rahn, H. (eds) Seabird Energetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4859-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4859-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4861-0

  • Online ISBN: 978-1-4684-4859-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics