Skip to main content
  • 918 Accesses

Abstract

In general, the detectors used for detecting electromagnetic radiation fall into one of two categories: (1) classical or thermal detectors and (2) quantum or photon detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E.H. Putley, in Semiconductors and Semimetals (R.K. Willardson and A.C. Beer, eds.), Vol. 5, pp. 259–285, Academic Press, New York (1970).

    Google Scholar 

  2. E.H. Putley, in Topics in Applied Physics, Optical and Infrared Detectors (R.J. Keyes, ed.), Vol. 19, pp. 71–100, Springer-Verlag, Berlin, (1980).

    Google Scholar 

  3. P.W. Kruse, in Topics in Applied Physics, Optical and Infrared Detectors (R.J. Keyes, ed.), Vol. 19, pp. 5–69, Springer-Verlag, Berlin (1980).

    Google Scholar 

  4. S.M. Ryvkin, Photoelectric Effects in Semiconductors, Consultants Bureau, New York (1964).

    Google Scholar 

  5. R.P. Riesz, High-speed semiconductor photodiodes, Rev. Sci Instrum. 33, 994–998 (1962).

    Article  ADS  Google Scholar 

  6. C.A. Burrus and W.M. Sharpless, Planar p-n-junction germanium photodiodes for use at microwave modulation frequencies, Solid-State Electron. 13, 1283–1287 (1970).

    Article  ADS  Google Scholar 

  7. D.H. Seib and L.K. Aukerman, in Advances in Electronics and Electron Physics (L. Marton, ed.), Vol. 34, pp. 95–221, Academic Press, New York (1973).

    Google Scholar 

  8. D.K. Hohnke and H. Holloway, Epitaxial PbSe Schottky-barrier diodes for infrared detection, Appl. Phys. Lett. 24, 633–635 (1974).

    Article  ADS  Google Scholar 

  9. D.K. Honke, H. Holloway, K.F. Yeung, and M. Hurley, Thin-film (Pb, Sn)Se photodiodes for 8–12 μm operation, Appl. Phys. Lett. 29, 98–100 (1976).

    Article  ADS  Google Scholar 

  10. S.G. Parker, Expitaxial deposition of Pb x Sn1-x Te on Pb x Sn1-x Te substrates in a closed system, J. Electrochm. Soc. 123, 920–924 (1976).

    Article  Google Scholar 

  11. T.K. Chu, A.C. Bouley, and G.M. Black, Preparation of epitaxial thin film lead salt infrared detectors, Proc. SPIE—Int. Soc. Opt. Eng. 285 (Infrared Detect. Mater.) (1981), p. 33.

    Google Scholar 

  12. M. Drinkwine, J. Rozenbergs, S. Jost, and A. Amith, The lead/lead sulfide selenide PbS0.5Se0.5 interface and performance of lead/lead sulfide selenide (PbS0.5Se0.5) photodiodes, Proc. SPIE—Int. Soc. Opt. Eng. 285 (Infrared Detect. Mater.) (1981), p. 36.

    Google Scholar 

  13. J. Baars, D. Basset, and M. Schulz, Metal-semiconductor barrier studies of PbTe, Phys. Status Solidi(a) 49, 483–488 (1978).

    Article  ADS  Google Scholar 

  14. E.Y. Chan and H.C. Card, Infrared optoelectronic properties of metal-germanium Schottky barriers, IEEE Trans. Electron. Devices ED-27, 78–83 (1980).

    Article  ADS  Google Scholar 

  15. R. B. Schoolar, J. D. Jensen, G. M. Black, S. Foti, and A. C. Bouley, Multispectral Pb x Sn1-x and Pb y Sn1-y Se photovoltaic infrared detectors, Infrared Phys. 20, 271–275 (1980).

    Article  ADS  Google Scholar 

  16. D.L. Polla and A.K. Sood, Schottky barrier photodiodes in pHg1-x Cd x Te, J. Appl. Phys. 51, 4908–4912 (1980).

    Article  ADS  Google Scholar 

  17. Y. Nagao, T. Hariu, and Y. Shibata, GaSb Schottky diodes for infrared detectors, IEEE Trans. Electron Devices ED-28, 407–411 (1981).

    Article  ADS  Google Scholar 

  18. S.C. Gupta, B.L. Sharma, and V.V. Agashe, Comparison of Schottky barrier and diffused junction infrared detectors, Infrared Phys. 19, 545–548 (1979).

    Article  ADS  Google Scholar 

  19. M.V. Schneider, Schottky barrier photodiodes with antireflection coating, Bell System Tech. J. 45, 1611–1638 (1966).

    Google Scholar 

  20. W.M. Sharpless, Evaluation of a specially designed GaAs Schottky barrier photodiode using 6328 Å radiation modulated at 4 GHz, Appl. Opt. 9, 489–494 (1970).

    Article  ADS  Google Scholar 

  21. F.D. Shepherd, Recent advances in Schottky IR-photodiodes and projected camera capabilities, International electron device meeting, Washington D.C., 7 December 1981.

    Google Scholar 

  22. W. Shockley and W.T. Read, Statistics of the recombination of holes and electrons, Phys. Rev. 87, 835–842 (1952).

    Article  ADS  MATH  Google Scholar 

  23. A.G. Milnes, Semiconductor Devices and Integrated Electronics, Van Nostrand Reinhold Company, New York (1980).

    Google Scholar 

  24. J.S. Blakemore, Semiconductor Statistics, Pergamon Press, Oxford (1962).

    MATH  Google Scholar 

  25. W. van Roosbroeck and W. Shockley, Photon radiative recombination of electrons and holes in germanium, Phys. Rev. 94, 1558–1560 (1954).

    Article  ADS  Google Scholar 

  26. A.R. Beattie and P.T. Landesberg, Auger effect in semiconductors, Proc. R. Soc. London Ser. A 249, 16–29 (1959).

    Article  ADS  Google Scholar 

  27. A.R. Beattie and P.T. Landesberg, One-dimensional overlap functions and their application to Auger recombination in semiconductors, Proc. R. Soc. London Ser. A 258, 486–495 (1960).

    Article  ADS  Google Scholar 

  28. H. Preier, Comparison of the junction resistance of (PbSn)Te and (PbSn)Se infrared detector diodes, Infrared Phys. 18, 43–46 (1978).

    Article  ADS  Google Scholar 

  29. S.M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, New York (1969).

    Google Scholar 

  30. S.C. Gupta, B.L. Sharma, and V.V. Agashe, Nomographs for evaluating parameters of Schottky barrier IR-detectors, Infrared Phys. 19, 673–675 (1979).

    Article  ADS  Google Scholar 

  31. J. Bardeen, Surface states and rectification at a metal semiconductor contact, Phys. Rev. 71, 717–727 (1947).

    Article  ADS  Google Scholar 

  32. A.M. Cowley and S.M. Sze, Surface States and barrier height of metal-semiconductor systems, J. Appl. Phys. 96, 3212–3220 (1965).

    Article  ADS  Google Scholar 

  33. V. Heine, Theory of surface states, Phys. Rev. A 138, 1689–1696 (1965).

    ADS  Google Scholar 

  34. S.G. Louie, J R. Chelikowsky, and M.L. Cohen, Ionicity and the theory of Schottky barriers, Phys. Rev. B 15, 2154–2162 (1977).

    Article  ADS  Google Scholar 

  35. L.J. Brillson, Transition in Schottky barrier formation with chemical reactivity, Phys. Rev. Lett. 40, 260–263 (1978).

    Article  ADS  Google Scholar 

  36. K. Zdansky and Z. Sroubek, in Physics of Semiconductors (B.L.H. Wilson, ed.), Conference Series No. 43, pp. 761–764, Institute of Physics, London (1979).

    Google Scholar 

  37. R.H. Williams, V. Montgomery, and R.R. Varma, Chemical effects in Schottky barrier formation, J. Phys. C: Solid State Phys. 11, L735-L738 (1978).

    Article  ADS  Google Scholar 

  38. M. Schlüter, Chemical trends in metal-semiconductor barrier heights, Phys. Rev. B 17, 5044–5047 (1978).

    Article  ADS  Google Scholar 

  39. V.S. Fomenko, Handbook of Thermionic Properties, Plenum Press, New York (1966).

    Google Scholar 

  40. E.H. Rhoderick, Metal-Semiconductor Contacts, Clarendon Press, Oxford (1978).

    Google Scholar 

  41. H.B. Michaelson, Relation between an atomic electro negativity scale and the work function, IBM J. Res. Devp. 22, 72–80 (1978).

    Article  Google Scholar 

  42. H.B. Michaelson,spi Work Function of the Elements, Handbook of Chemistry and Physics (R.C. Weast, ed.), 58th ed. CRC Press, Cleveland, Ohio, pp. E81-E82 (1977–1978).

    Google Scholar 

  43. R.Z. Bachrach and A. Bianconi, Interface states at the Ga-GaAs interface, J. Vac. Sci. Technol. 15, 525–528 (1978).

    Article  ADS  Google Scholar 

  44. L.J. Brillson, Chemical reaction and charge redistribution at metal-semiconductor interfaces, J. Vac. Sci. Technol. 15, 1378–1383 (1978).

    Article  ADS  Google Scholar 

  45. I. Lindau, P.W. Chye, C.M. Garner, P. Pianetta, C.Y. Su, and W.C. Spicer, New phenomena in Schottky barrier formation on III-V compounds, J. Vac. Sci Technol. 15, 1332–1339 (1978).

    Article  ADS  Google Scholar 

  46. L.J. Brillson, Chemical reactions and local charge redistribution at metal-CdS and CdSe interfaces, Phys. Rev. B 18, 2431–2446 (1978).

    Article  ADS  Google Scholar 

  47. V.L. Rideout, Review of the theory, technology and application of metal-semiconductor rectifiers, Thin Solid Films 48, 261–291 (1978).

    Article  ADS  Google Scholar 

  48. F. Lukes, Oxidation of Si and GaAs in air at room temperature, Surf. Sci. 30, 91–100 (1972).

    Article  ADS  Google Scholar 

  49. A.C. Adams and B.R. Pruniax, Gallium arsenide surface film evaluation by ellipsometry and its effect on Schottky barriers, J. Electrochem. Soc. 120, 408–414 (1973).

    Article  Google Scholar 

  50. R.B. Schoolar and J.D. Jensen, Narrowband detection at long wavelengths with epitaxial Pb y Sn1-y Se films, Appl. Phys. Lett. 31, 536–538 (1977).

    Article  ADS  Google Scholar 

  51. R.B. Schoolar, J.D. Jensen, and G.M. Black, Composition-turned PbS x Se1-x , Schottkybarrier infrared detectors, Appl. Phys. Lett. 31, 620–622 (1977).

    Article  ADS  Google Scholar 

  52. R. Longshore, M. Jasper, B. Summer, and P. LoVecehio, Evaluation of Pb0.8Sn0.2Te detector fabrication using surface analysis, Infrared Phys. 15, 311–315 (1975).

    Article  ADS  Google Scholar 

  53. H.C. Card, E.S. Yang, and P. Panayotatos, Peaked Schottky-barrier solar cells by Al-Si metallurigical reactions, Appl. Phys. Lett. 30, 643–645 (1977).

    Article  ADS  Google Scholar 

  54. J. Basterfield, J.M. Shannon, and A. Gill, The nature of barrier height variations in alloyed Al-Si Schottky barrier diodes, Solid State Electron. 18, 290–291 (1975).

    Article  ADS  Google Scholar 

  55. S. Buchner, T.S. Sun, W.A. Beck, N.E. Byer, and J.M. Chen, Schottky barrier formation on (Pb, Sn)Te, J. Vac. Sci. Technol. 16, 1171–1173 (1979).

    Article  ADS  Google Scholar 

  56. B.L. Sharma and S.C. Gupta, Metal-semiconductor Schottky barrier junctions, Part 1-Fabrication, Solid State Technol. 23, 97–101 (May 1980).

    Article  Google Scholar 

  57. J.D. Jensen and R.B. Schoolar, Surface charge transport in PbS x Se1-x and PbS1-y Sn y Se epitaxial films, J. Voc. Sci. Technol. 13, 920–925 (1976).

    Article  ADS  Google Scholar 

  58. M. Bleicher, H.D. Wurzinger, H. Maier, and H. Preier, n-type PbS and PbS1-x Sn x layers prepared by the hot-wall epitaxy, J. Mater. Sci. 12, 317–322 (1977).

    Article  ADS  Google Scholar 

  59. D. Tsang and S.E. Schwarz, Detection of 10 km radiation with point-contact Schottky diodes, Appl. Phys. Lett. 30, 263–265 (1977).

    Article  ADS  Google Scholar 

  60. R.D. Baertsch and J.R. Richardson, An Ag-GaAs Schottky-barrier ultraviolet detector, J. Appl. Phys. 40, 229–236 (1969).

    Article  ADS  Google Scholar 

  61. G.E. Stillman. C.M. Wolfe, A.G. Foyt, and W.T. Lindley, Schottky barrier ln x Ga1-x As alloy avalanche photodiodes for 1.06 μm, Appl. Phys. Lett. 24, 8–10 (1974).

    Article  ADS  Google Scholar 

  62. J.R. Richardson and R.D. Baertsch, Zinc sulfide Schottky barrier ultra-violet detectors, Solid State Electron. 12, 393–397 (1969).

    Article  ADS  Google Scholar 

  63. E.M. Logothetis, H. Holloway, A.J. Varga, and E. Wilkes, Infrared detection by Schottky barriers in epitaxial PbTe, Appl. Phys. Lett. 19, 318–320 (1971).

    Article  ADS  Google Scholar 

  64. R.A. Chapman, M.R. Johnson, and H.B. Morris, Metal-semiconductor diode infrared detector having semi-transparent electrode, U.S. Patent 3, 980, 915 (September 14, 1976).

    Google Scholar 

  65. B.L. Sharma and S.C. Gupta, Metal-semiconductor Schottky barrier junctions: Part II— Characterization and applications, Solid State Technol. 23, 90–95 (June 1980).

    Article  Google Scholar 

  66. M. Lanir, A.H.B. Vanderwyck, and C.C. Wang, EBIC characterization of HgCdTe crystals and photodiodes, J. Electron. Mat. 8, 175–189 (1979).

    Article  ADS  Google Scholar 

  67. R.W. Grant, J.G. Pasko, J.T. Longo, and A.M. Andrews, ESCA surface studies of Pb1-x Te devices, J. Vac. Sci Technol. 13, 940–947 (1976).

    Article  ADS  Google Scholar 

  68. A. Christon and K. Sleger, in GaAs and Related Compunds, St. Louis 1976 (L.F. Eastman, ed.), Conference Series No. 33b, pp. 191–200, Institute of Physics, London (1977).

    Google Scholar 

  69. J.J. Lander, H. Schreiber, Jr., T.M. Buch, and J.B. Mathews, Microscopy of internal crystal imperfections in Si p-n junction diodes by use of electron beam, Appl. Phys. Lett. 3, 206–207 (1963).

    Article  ADS  Google Scholar 

  70. W. Czaja, Response of Si and GaP p-n junctions to a 5- to 40-keV electron beam, J. Appl. Phys. 37, 4236–4248 (1966).

    Article  ADS  Google Scholar 

  71. T.E. Everhart, O.C. Wells, and R.K. Matta, A novel method of semiconductor device measurements, Proc. IEEE 52, 1642–1647 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Gupta, S.C., Preier, H. (1984). Schottky Barrier Photodiodes. In: Sharma, B.L. (eds) Metal-Semiconductor Schottky Barrier Junctions and Their Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4655-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4655-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4657-9

  • Online ISBN: 978-1-4684-4655-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics