Skip to main content

Structure Analysis of Coals by Resolution Enhanced Solid State 13C NMR Spectroscopy

  • Chapter
Atomic and Nuclear Methods in Fossil Energy Research

Abstract

Solid state 13C nmr spectroscopy employing the experimental techniques of dipolar decoupling,2,3 magic angle spinning4,5 and 1H-13C cross polarization3 (CP/MAS-13C nmr spectroscopy) yields spectra which approach solution 13C-FT-nmr spectra in resolution and sensitivity. Resonance linewidths of 10–50 Hz in discrete organic substances are typical. Those in amorphous solids and glassy polymers generally are degraded to 50–150 Hz (2–6 ppm at 2.35T) by chemical shift dispersion and/or residual dipolar broadening.5–10 In homogeneous systems, this level of resolution permits the measurement of isotropic chemical shift and relaxation time parameters in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Research sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, U. S. Department of Energy, under contract W-7405-eng-26 with the Union Carbide Corporation.

    Google Scholar 

  2. L. R. Sarles and R. M. Cotts, Double Nuclear Magnetic Resonance and the Dipole Interaction in Solids, Phys. Rev. 111: 853 (1958).

    Article  CAS  Google Scholar 

  3. A. Pines, M. G. Gibby, and J. S. Waugh, Proton-enhanced NMR of Dilute Spins in Solids, J. Chem. Phys. 59: 569 (1973).

    Article  CAS  Google Scholar 

  4. E. R. Andrew, The Narrowing of NMR Spectra of Solids by High-Speed Specimen Rotation and the Resolution of Chemical Shifts and Spin Multiplet Structures for Solids, in “Progress in Nuclear Magnetic Resonance Spectroscopy,” J. W. Ensley, J. Feeney, and L. H. Sutcliffe, eds., Pergamon Press, Oxford (1972).

    Google Scholar 

  5. J. Schaefer, E. O. Stejskal and R. Buchdahl, High-Resolution Carbon-13 Nuclear Magnetic Resonance Study of Some Solid Glassy Polymers, Macromolecules 8: 291 (1975).

    Article  CAS  Google Scholar 

  6. J. Schaefer and E. O. Stejskal, Carbon-13 Nuclear Magnetic Resonance of Polymers Spinning at the Magic Angle, J. Am. Chem. Soc. 98: 1031 (1976).

    Article  CAS  Google Scholar 

  7. J. Schaefer, E. O. Stejskal, and R. Buchdahl, Magic-Angle 13C NMR Analysis of Motion in Solid Glassy Polymers, Macromolecules 10: 384 (1977).

    Article  CAS  Google Scholar 

  8. C. A. Fyfe, J. R. Lyerla, W. Volksen, and C. S. Yannoni, High-Resolution Carbon-13 Nuclear Magnetic Resonance Studies of Polymers in the Solid State. Aromatic Polyesters, Macromolecules 12: 757 (1979).

    Article  CAS  Google Scholar 

  9. W. L. Earl and D. L. Vanderhart, Observations in Solid Polyethylenes by Carbon-13 Nuclear Magnetic Resonance with Magic Angle Sample Spinning, Macromolecules 12: 762 (1979).

    Article  CAS  Google Scholar 

  10. W. S. Veeman, E. M. Menger, W. Ritchey, and E. deBoer, High-Resolution Carbon-13 Nuclear Magnetic Resonance of Solid Poly(oxymethylene), Macromolecules 12: 924 (1979).

    Article  CAS  Google Scholar 

  11. D. L. Vanderhart and H. L. Retcofsky, Estimation of Coal Aromaticities by Proton-decoupled Carbon-13 Magnetic Resonance Spectra of Whole Coals, Fuel 55: 202 (1976).

    Article  CAS  Google Scholar 

  12. V. J. Bartuska, G. E. Maciel, J. Schaefer, and E. O. Stejskal, Prospects for Carbon-13 Nuclear Magnetic Resonance Analysis of Solid Fossil Fuel Materials, Fuel 56: 354 (1977).

    Article  CAS  Google Scholar 

  13. H. L. Retcofsky and D. L. “Vanderhart” 13C-1H Cross-polarization Nuclear Magnetic Resonance Spectra of Macérais from Coal, Fuel 57: 421 (1978).

    Article  CAS  Google Scholar 

  14. K. W. Zilm, R. J. Pugmire, D. M. Grant, R. E. Wood, and W. H. Wiser, A Comparison of the Carbon-13 NMR Spectra of Solid Coals and their Liquids Obtained by Catalytic Hydrogénation, Fuel 58: 11 (1979).

    Article  CAS  Google Scholar 

  15. G. E. Maciel, V. J. Bartuska, and F. P. Miknis, Characterization of Organic Material in Coal by Proton-decoupled 13C Nuclear Magnetic Resonance with Magic Angle Spinning, Fuel 58: 391 (1979).

    Article  CAS  Google Scholar 

  16. H. A. Resing, A. N. Garroway, and R. N. Hazlett, Determination of Aromatic Hydrocarbon Fraction in Oil Shale by 13C N.M.R. with Magic-Angle Spinning, Fuel 57: 450 (1978).

    Article  CAS  Google Scholar 

  17. F. P. Miknis, G. E. Maciel, and V. J. Bartuska, Cross Polarization Magic-Angle Spinning 13C N.M.R. Spectra of Oil Shales, Org. Geochem. 1: 169 (1979).

    Article  CAS  Google Scholar 

  18. I. D. Campbell, C. M. Dobson, R. J. P. Williams, and A. V. Xavier, Resolution Enhancement of Protein PMR Spectra Using the Difference Between a Broadened and a Normal Spectrum, J. Magn. Res. 11: 172 (1973).

    CAS  Google Scholar 

  19. R. R. Ernst, Sensitivity Enhancement in Magnetic Resonance, in “Advances in Magnetic Resonance,” J. S. Waugh, ed., Academic Press, New York (1966).

    Google Scholar 

  20. Cf. C. H. A. Seiter, G. W. Feigenson, S. I. Chan, and M.-C. Hsu, Delayed Fourier Transform Proton Magnetic Resonance Spectroscopy, J. Am. Chem. Soc. 94: 2535 (1972).

    Article  CAS  Google Scholar 

  21. S. R. Hartmann and E. L. Hahn, Nuclear Double Resonance in the Rotating Frame, Phys. Rev. 128: 2042 (1962).

    Article  CAS  Google Scholar 

  22. K. Niemann and H.-P. Hombach, Studies in the Chemical Characterization of Coal: Reduction Via Solvated Electrons, Fuel 58: 853 (1979).

    Article  CAS  Google Scholar 

  23. C. J. Collins, H.-P. Hombach, B. Maxwell, M. C. Woody, and B. M. Benjamin, Carbon-Carbon Cleavage during Birch-Hlickel-Type Reductions, J. Am. Chem. Soc. 102: 851 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Hagaman, E.W., Woody, M.C. (1982). Structure Analysis of Coals by Resolution Enhanced Solid State 13C NMR Spectroscopy. In: Filby, R.H., Carpenter, B.S., Ragaini, R.C. (eds) Atomic and Nuclear Methods in Fossil Energy Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4133-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4133-8_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4135-2

  • Online ISBN: 978-1-4684-4133-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics