Skip to main content

Instabilities in Optical Bistability:Transform from CW to Pulsed

  • Chapter
Optical Bistability

Abstract

This paper reviews the results obtained by our group on the stationary solution for OB in a ring cavity and on the instabilities that can arise in these solutions. First, we solve exactly and analytically the Maxwell-Bloch equations with the proper boundary conditons both in the absorptive and in dispersive case, both for homogeneous broadening and for Lorentzian inhomogeneous broadening. In the limit αL → 0, T → 0, with αL/T arbitrary, the exact solution reduces to the previously calculated mean field state equation. In this case, we give explicit analytic bistability conditions which show in particular that the purely absorptive case is the one in which one finds the largest hysteresis cycle. On the other hand, the exact solution shows that the mean field limit case is the optimal situation to observe bistability. In fact, an increase of T causes a decrease of the size of the cycle, until for T large enough the bistable behavior disappears. We show also that under suitable conditions a part of the curve of transmitted vs. incident light with positive slope can become unstable. In the dispersive case, this situation can occur also in the absence of bistability, whereas in the purely absorptive case this instability can arise only in bistable situations, and precisely in the high transmission branch of the hysteresis cycle. When there is instability the system either precipitates to the low transmission branch, thereby producing a net reduction of the cycle, or evolves towards an undamped spiking situation (self-pulsing). In the latter case, the system works as an all-optical device which transforms CW light into pulsed light. We give analytic instability conditions in the case aL ≪ 1, T ≪ 1 (mean field limit, again!), in which the dynamics of the system is governed by the modes of the cavity. The self-pulsing instability occurs when the nonlinear dynamics of the system transfers part of the incident energy from the resonant mode to other cavity modes, thereby producing the spiking behavior. Hence, with respect to these off-resonance modes, the system behaves as a type of laser that works without population inversion. Finally, we have analyzed the instabilities in the case of a Fabry-Perot. It turns out that self-pulsing is much more difficult to be achieved than in the case of the ring cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Szoke, V. Daneu, J. Goldhar and N. A. Kurnit, Appl.Phys. Lett. 15, 376 (1969); see also J. W. Austin and L. G. Deshazer, J. Opt. Soc. Am. 61, 650 (1971); E. Spiller, J. Appl.Phys. 43, 1673 (1972) and H. Seidel, US Patent 3,610, 731 (1971).

    Article  ADS  Google Scholar 

  2. S. L. McCall, Phys. Rev. A9, 1515 (1974).

    ADS  Google Scholar 

  3. H. M. Gibbs, S. L. McCall and T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).

    Article  ADS  Google Scholar 

  4. F. S. Felber and J. H. Marburger, Appl.Phys. Lett. 28, 731 (1976) and Phys. Rev. A17, 335 (1978).

    Article  ADS  Google Scholar 

  5. R. Bonifacio and L. A. Lugiato, Opt. Commun. 19, 172 (1976).

    Article  ADS  Google Scholar 

  6. P. W. Smith and E. H. Turner, Appl.Phys. Lett. 30, 280 (1977).

    Article  ADS  Google Scholar 

  7. T. N. C. Venkatesan and S. L. McCall, Appl.Phys. Lett. 30, 282 (1977).

    Article  ADS  Google Scholar 

  8. T. Bishofberger and Y. R. Shen, Appl.Phys. Lett. 32, 156 (1978) and Phys. Rev. A19, 1169 (1979); D. Grischkowsky, J. Opt. Soc. Am. 68, 641 (1978).

    Article  ADS  Google Scholar 

  9. E. Garmire, J. H. Marburger, S. D. Alien and H. G. Winful, Appl. Phys. Lett. 34, 374 (1979).

    Article  ADS  Google Scholar 

  10. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner and W. Wiegmann, Appl.Phys. Lett. 35, 451 (1979).

    Article  ADS  Google Scholar 

  11. D. A. B. Miller, S. D. Smith and A. Johnston, Appl.Phys. Lett. 35, 658 (1979).

    Article  ADS  Google Scholar 

  12. W. J. Sand le and A. Gallagher, in this volume.

    Google Scholar 

  13. E. Arimondo, A. Gozzini, L. Lovitch and E. Pistelli, in this volume.

    Google Scholar 

  14. R. Bonifacio and L. A. Lugiato in “Coherence and Quantum Optics IV,” Ed. by L. Mandel and E. Wolf, Plenum Publishing Co., New York, 1977 and Phys. Rev. A18, 1129 (1978).

    Google Scholar 

  15. G. S. Agarwal, L. M. Narducci, D. H. Feng and R. Gilmore, in “Coherence and Quantum Optics IV,” Ed. by L. Mandel and E. Wolf, Plenum Publishing Co., New York, 1977.

    Google Scholar 

  16. H. J. Carmichael and D. F. Walls, Journ. of Phys. B10, L685 (1977).

    Google Scholar 

  17. C. R. Willis, Opt. Comm. 23, 151 (1977).

    Article  ADS  Google Scholar 

  18. F. T. Arecchi and A. Politi, Lett. Nuovo Cimento 23, 65 (1978).

    Article  Google Scholar 

  19. R. Bonifacio and L. A. Lugiato, Phys. Rev. Lett. 40, 1023, 1538 (1978).

    Article  ADS  Google Scholar 

  20. G. S. Agarwal, L. M. Narducci, R. Gilmore and D. H. Feng, Opt. Lett. 2, 88 (1978); Phys. Rev. A18, 620 (1978); 20, 545 (1979).

    Article  ADS  Google Scholar 

  21. L. A. Lugiato, Nuovo Cimento B50, 89 (1979).

    ADS  Google Scholar 

  22. G. S. Agarwal and S. P. Tewari, Phys. Rev. A, in press.

    Google Scholar 

  23. F. Casagrande and L. A. Lugiato, Nuovo Cimento B55, 173 (1980).

    ADS  Google Scholar 

  24. R. Bonifacio, M. Gronchi and L. A. Lugiato, Phys. Rev. A18, 2266 (1978).

    ADS  Google Scholar 

  25. C. R. Willis, Opt. Commun. 26, 62 (1978).

    Article  ADS  Google Scholar 

  26. A. Schenzle and H. Brandt, Opt. Commun. 27, 85 (1978) and 31, 401 (1979).

    Article  Google Scholar 

  27. F. T. Arecchi and A. Politi, Opt. Commun. 29, 361 (1979).

    Article  ADS  Google Scholar 

  28. R. F. Gragg, W. C. Schieve and A. R. Bulsara, Phys. Lett. A68, 294 (1978) and Phys A68, 294 (1978) and Phys. Rev. A19, 2052 (1979).

    ADS  Google Scholar 

  29. P. D. Drummond and D. F. Walls, Journ. Phys. A13, 725 (1980); J. Chrostowski and A. Zardecki, Opt. Commun. 29, 230 (1979).

    Google Scholar 

  30. L. A. Lugiato, J. Farina and L. M. Narducci, Phys. Rev., A22, 253 (1980).

    ADS  Google Scholar 

  31. P. Hanggi, A. R. Bulsara and R. Janda, Phys. Rev. A, in press.

    Google Scholar 

  32. R. Bonifacio and P. Meystre, Opt. Commun. 27, 147 (1978); 29, 131 (1978).

    Article  ADS  Google Scholar 

  33. P. Meystre and H. Hopf, Opt. Commun. 29, 235 (1979).

    Article  ADS  Google Scholar 

  34. V. Benza and L. A. Lugiato, Lett. Nuovo Cimento 26, 405 (1979).

    Article  ADS  Google Scholar 

  35. F. Hopf, P. Meystre, P. D. Drummond and D. F. Walls, Opt. Commun. 31, 245 (1979).

    Article  ADS  Google Scholar 

  36. R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 517 (1978).

    Article  Google Scholar 

  37. S. S. Hassan, P. D. Drummond and D. F. Walls, Opt. Commun. 27, 480 (1978).

    Article  ADS  Google Scholar 

  38. G. P. Agrawal and H. J. Carmichael, Phys. Rev. A19, 2074 (1979).

    MathSciNet  ADS  Google Scholar 

  39. R. Bonifacio, M. Gronchi and L. A. Lugiato, Nuovo Cimento B53, 311 (1979).

    ADS  Google Scholar 

  40. P. Schwendimann, Journ. of Physics 12, A, L 39 (1979).

    Google Scholar 

  41. C. M. Bowden and C. C. Sung, Phys. Rev. A19, 2392 (1979); and C. M. Bowden, this volume.

    ADS  Google Scholar 

  42. C. R. Willis and J. Day, Opt. Commun. 28, 137 (1979).

    Article  ADS  Google Scholar 

  43. S. P. Tewari, Opt. Acta 26, 145 (1979).

    Article  ADS  Google Scholar 

  44. R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 505 (1978).

    Article  Google Scholar 

  45. R. Bonifacio, L. A. Lugiato and M. Gronchi in “Laser Spectroscopy IV,” Ed. By H. Walther and W. K. Rothe, Springer-Verlag, 1979.

    Google Scholar 

  46. K. Ikeda, Opt. Commun. 30, 257 (1979).

    Article  ADS  Google Scholar 

  47. R. Roy and M. S. Zubairy, in press.

    Google Scholar 

  48. M. Gronchi and L. A. Lugiato, Opt. Lett,. 5, 108 (1980).

    Article  ADS  Google Scholar 

  49. P. Meystre, Opt. Commun. 26, 277 (1978).

    Article  ADS  Google Scholar 

  50. J. A. Fleck, Jr., Appl. Phys. Lett. 13, 365 (1968).

    Article  ADS  Google Scholar 

  51. F. Abraham, R. K. Bullough and S. S. Hassan, Opt. Comm. 29, 109 (1979) and 32 (1980).

    Article  ADS  Google Scholar 

  52. R. Roy and M. S. Zubairy, Opt. Commun. 32, 163 (1980) and Phys. Rev. A21, 274 (1980).

    Article  ADS  Google Scholar 

  53. H. J. Carmichael, Opt. Acta 27, 147 (1980).

    Article  Google Scholar 

  54. J. A. Hermann, Opt. Acta 27, 159 (1980).

    Article  ADS  Google Scholar 

  55. H. J. Carmichael and J. A. Hermann, Zeit. f. Physik, 38, 365 (1980).

    Article  MathSciNet  Google Scholar 

  56. M. B. Spencer and W. E. Lamb Jr., Phys. Rev. A5, 884 (1972). Note however that the laser with injected signal is not bistable.

    ADS  Google Scholar 

  57. S. L. McCall and H. M. Gibbs, Opt. Commun. 33, 335 (1980).

    Article  ADS  Google Scholar 

  58. R. Bonifacio and L. A. Lugiato, Lett. Nuovo Cimento 21, 510 (1978).

    Article  Google Scholar 

  59. R. Bonifacio, M. Gronchi and L. A. Lugiato, Opt. Commun. 30, 129 (1979).

    Article  ADS  Google Scholar 

  60. S. L. McCall, Appl. Phys. Lett. 32, 284 (1978).

    Article  ADS  Google Scholar 

  61. H. M. Gibbs, S. L. McCall and T. N. C. Verkatesan, Optics News, Summer 1979.

    Google Scholar 

  62. H. Haken, Phys. Lett. 53A, 77 (1975).

    ADS  Google Scholar 

  63. H. Risken and K. Nummedal, Journ. Appl. Phys. 49, 4662 (1968).

    Article  ADS  Google Scholar 

  64. R. Graham and H. Haken, Zeits. f. Physik 213, 420 (1968).

    Article  ADS  Google Scholar 

  65. An example of chaotic behavior is given in Ref. 46 for a case of dispersive multistability. The nature of this behavior is completely different from that of our self-pulsing behavior. In fact, the instability that leads to chaos in Ref. 46 never arises in the absorptive case.

    Google Scholar 

  66. M. Gronchi, V. Benza, L. A. Lugiato, P. Meystre and M. Sargent III, submitted for publication.

    Google Scholar 

  67. L. A. Lugiato, Opt. Commun. 33, 108 (1980).

    Article  ADS  Google Scholar 

  68. F. Casagrande, L. A. Lugiato and M. L. Asquini, Opt. Commun. 32, 492 (1980).

    Article  ADS  Google Scholar 

  69. M. Sargent III, Sov. J. Quantum Electronics, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Bonifacio, R., Gronchi, M., Lugiato, L.A. (1981). Instabilities in Optical Bistability:Transform from CW to Pulsed. In: Bowden, C.M., Ciftan, M., Robl, H.R. (eds) Optical Bistability. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3941-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3941-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3943-4

  • Online ISBN: 978-1-4684-3941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics