Skip to main content

The Serotonin Connection: Some Evidence for a Specific Metabolic Organization

  • Chapter
Serotonin

Abstract

During the last two decades numerous studies have demonstrated that the majority of serotonin (5 HT) containing cell bodies are mainly 1 if not exclusively 2 located among the heterogenous population of the raphe nuclei 3,4. Considerable amount of approaches using classical degeneration 5, histochemical fluorescence 6,7,8 anterograde 9,10,11,12,13,14 and retrograde axoplasmic flow 15,16 17,18 have led to consider the extreme complexity of the anatomical organization of these nuclei. Their multiple connections with all brain regions and with other specific systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Dahlström and K. Fuxe, Evidence for the existence of monoamine-containing neurons in the central nervous system. I - Demonstration of monoamines in the cell bodies of brain stem neurons, Acta Physiol. Scand. 62 (suppl. 232): 1 (1964).

    Google Scholar 

  2. L. Leger, L. Wiklund, L. Descarries and M. Persson, Description of an indolaminergic cell component in the cat locus coeruleus: a fluorescence histochemical and radioautographic study, Brain Res. 168: 43 (1979).

    Article  PubMed  CAS  Google Scholar 

  3. E. Taber, A. Brodai and F. Walberg, The raphe nuclei of the brain stem in the cat. I - Normal topography and cytoarchitecture and general discussion, J. Comp. Neurol. 114: 161 (1960).

    Article  PubMed  CAS  Google Scholar 

  4. F. Valverde, Reticular formation of the albino rat’s brain stem: cytoarchitecture and cortifugal connections, J. Comp. Neurol. 119: 25 (1962).

    Article  PubMed  CAS  Google Scholar 

  5. A. Brodai, F. Walberg and E. Taber, The raphe nuclei of the brain stem in the cat. II - Efferent connections, J. Comp. Neurol., 114: 239 (1960).

    Article  Google Scholar 

  6. A. Björklund, A. Nobin and U. Stenevi, The use of neurotoxic dihydroxytryptamines as tools for morphological studies and localized lesioning of central indoleamine neurons, Z. Zellforsch. 145: 479 (1973).

    Article  Google Scholar 

  7. K. Fuxe, Evidence for the existence of monoamine containing neurons in the central nervous system. IV - The distribution of monoamine terminals in the central nervous system, Acta Physiol. Scand. 64: 37 (1965).

    Google Scholar 

  8. U. Ungerstedt, Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol. Scand. 367: 1 (1971).

    CAS  Google Scholar 

  9. A.E. Halaris, B.E. Jones and R.Y. Moore, Axonal transport in serotonin neurons of the midbrain raphe, Brain Res. 107: 555 (1976).

    Article  PubMed  CAS  Google Scholar 

  10. R.Y. Moore and A.E. Halaris, Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat, J. Comp.Neurol. 164: 171 (1975).

    Article  PubMed  CAS  Google Scholar 

  11. L.C.A. Conrad, C.M. Leonard and D.W. Pfaff, Connections of the median and dorsal raphe nuclei in the rat: an autoradiographic and degeneration study, J. Comp. Neurol. 156: 179 (1974).

    Article  PubMed  CAS  Google Scholar 

  12. P. Bobillier, S. Seguin, F. Petitjean, D. Salvert, M. Touret and M. Jouvet, The raphe nuclei of the cat brainstem: a topographical atlas of their efferent projections as revealed by autoradiography, Brain Res. 113: 449 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. P. Bobillier, S. Seguin, A. Degueurce, B.D. Lewis and J.F. Pujol, The efferent connections of the nucleus raphe centralis superior in the rat as revealed by radioautography, Brain Res. 116: 1 (1979).

    Article  Google Scholar 

  14. E.C. Azmitia, The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei, in:“Handbook of Psychopharmacology”, L.L. Iversen, S.D. Iversen and S.H. Snyder, ed., Springer Science+Business Media New York (1978).

    Google Scholar 

  15. K. Sakai, M. Touret, D. Salvert, L. Leger and M. Jouvet, Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique, Brain Res., 119: 21 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. K. Sakai, M. Touret, D. Salvert and M. Jouvet, Afferents to the cat locus coeruleus and rostral raphe nuclei as visualized. by the horseradish peroxidase technique, in: “Interactions between putative neurotransmitters in the brain”, S. Garattini, J.F. Pujol and R. Samanin, ed., Raven Press, New York (1978).

    Google Scholar 

  17. G.K. Aghajanian and R.Y. Wang, Habenular and other midbrain raphe afferents dèmonstrated by a modified retrograde tracing technique, Brain Res., 122: 229 (1977).

    Article  PubMed  CAS  Google Scholar 

  18. S.S. Mosko, D. Haubrich and B.L. Jacobs, Serotonergic afferents to the dorsal raphe nucleus: evidence from HRP and synaptosomal uptake studies, Brain Res., 119: 269 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. M. Jouvet, The role of monaomine and acetylcholine containing neurons in the regulation of the sleep waking cycle, in: “Ergebnisse der Physiologie”, R.H. Adrian, ed., Springer Verlag, Berlin (1972).

    Google Scholar 

  20. W. Kostowski, E. Giacalone, S. Garattini and L. Valzelli, Studies on behavioural and biochemical changes in rats after lesions in midbrain raphe, Eur. J. Pharmacol. 4: 371 (1968).

    Article  PubMed  CAS  Google Scholar 

  21. L.P. Grant, D.V. Coscina, S.P. Grossman and D.X. Freedman, Muritide’after serotonin depleting lesions-of midbrain raphe nuclei, Pharmacol.’Biochem. Behay. 1: 77 ’(1–973)

    Google Scholar 

  22. J. Ferguson, S.J. Henriksen,-’H. Cohen,:(1. Mitchell, J. Barchas And W. Dement, Hypersexuality and behavioural changes in cats caused by ‘administration of p-chlarophenylalanine, Science 168: 499 (1970).

    Article  PubMed  CAS  Google Scholar 

  23. B. Eichelman and N.B. Thoa, The aggressive monoamines, Biol. Psychiat. 6: 143 (1973).

    CAS  Google Scholar 

  24. M. Vergnes, G. Marck and E. Kempf, Lesions du raphê et réaction d’agression interspécifiqüe rat-souris: effets comportementaux et biochimiques, Brain Res. 57: 67 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. S.A. Lorens, Effect of lesions in the raphe system on self stimulation in the rat, Physiol. Behay. 7: 815 (1971).

    Article  CAS  Google Scholar 

  26. B.J. Meyerson, Central nervous monoamines and hormone-induced estrous behaviour in the spayed rat, Acta Physiol. Scand. 63 (suppl. 241): 1 (1964).

    Google Scholar 

  27. B.J. Everitt, K. Fuxe and G. Jonsson, The effects of 5,6-dihydroxytryptamine lesions of ascending 5-hydroxyhyptamine pathways on the sexual and aggressive behavior of female rats, J. Pharmacol 6: 25 (1975).

    CAS  Google Scholar 

  28. S.A. Lorens, Raphe lesions in cats: forebrain serotonin and advance behaviour, Pharmacol. Biochem. Behay. 1: 487 (1973).

    Article  CAS  Google Scholar 

  29. R. Samanin, W. Oumulka and L. Valzelli, Reduced effect of morphine in midbrain lesioned rats, Eur. J. Pharmacol. 10: 339 (1970).

    Article  PubMed  CAS  Google Scholar 

  30. W. Feldberg and R.D. Myers, A new concept of temperature regulation by amines in the hypothalamus, Nature 200: 1325 (1963).

    Article  PubMed  CAS  Google Scholar 

  31. D.V. Coscina, L.D. Grant, S. Balagura and S.P. Grossman, hyperdipsia after serotonin depleting midbrain lesion, Nature 235: 63 (1972).

    Article  CAS  Google Scholar 

  32. S.A. Lorens and L.M. Yunger, Morphine analgesia, two way avoidance and consummatory behavior following lesions in the midbrain raphe nuclei in the rat, Pharmacol. Biochem. Behay. 2: 215 (1974).

    Article  CAS  Google Scholar 

  33. J.F. Pujol, P. Keane, A. McRae, B.D. Lewis and B. Renaud, Biochemical evidence for serotonergic control of the locus coeruleus, in: “Interactions between putative neurotransmitters in the brain”, S. Garattini, J.F. Pujol and R. Samanin, ed., Raven Press, New York (1978).

    Google Scholar 

  34. L. Descarries and L. Leger, Serotonin nerve terminals in the locus coeruleus of the adult rat, in: “Interactions between putative neurotransmitters in the brain”, S. Garattini, J.F. Pujol and R. Samanin, ed., Raven Press, New York (1978).

    Google Scholar 

  35. J.P. Kan, G. Chouvet, F. Hery, G. Debilly, A. Mermet, J. Glowinski and J.F. Pujol, Daily variations of various parameters of serotonin metabolism in the rat brain. I - Circadian variations of tryptophan-5-hydroxylase in the raphe nuclei and the striatum, Brain Res. 123: 125 (1977).

    Article  PubMed  CAS  Google Scholar 

  36. J.P. Natali, A. Degueurce, G. Chouvet and J.F. Pujol, Genetic studies of daily variations of first step enzymes of monoamines metabolism in the brain of inbred strains of mice and hybrids. I - Daily variations of tryptophan hydroxylase activity in the nuclei, raphe dorsalis, raphe centralis and in the striatum, Brain Res., in press.

    Google Scholar 

  37. M. Tappaz and J.F. Pujol, Estimation of the rate of tryptophan hydroxylation in vivo: a sensitive microassay in discrete rat brain nuclei, J. Neurochem., in press.

    Google Scholar 

  38. M. Hamon, S. Bourgoin and J. Glowinski, Feedback regulation of serotonin synthesis in the rat striatum, J. Neurochem. 20: 1727 (1973).

    Article  PubMed  CAS  Google Scholar 

  39. A. Carlsson and M. Lindqvist, In vivo measurement of tryptophan and tyrosine hydroxylase activities in mouse brain, J. Neur. Trans. 34: 79 (1973).

    Google Scholar 

  40. S. Bourgoin, F. Artaud, A. Enjalbert, F. Hery, J. Glowinski and M. Hamon, Acute changes in central 5 HT metabolism induced by the blockade of stimulation of serotoninergic receptors during ontogenesis in the rat, J. Pharmacol. Exp. Ther. 202: 519 (1977).

    PubMed  CAS  Google Scholar 

  41. J.F. Pujol, The role of the monoaminergic neurons in the sleep-waking cycle, in: “The sleeping brain”, M.H. Chase, ed., (1972).

    Google Scholar 

  42. M. Jouvet, Biogenic amines and the states of sleep, Science 163: 32 (1969).

    Article  PubMed  CAS  Google Scholar 

  43. M. Jouvet, The role of monoamine and acetylcholine containing neurons in the regulation of the sleep waking cycle, in: “Neurophysiology and neurochemistry of sleep and wakefulness”, R.H. Adrian, ed., Springer Verlag, Berlin (1972).

    Google Scholar 

  44. P. Lindbrink, The effect of ascending noradrenalin pathways on sleep and waking in the rat, Brain Res. 74: 19 (1974).

    Article  Google Scholar 

  45. P. Bobillier, J.L. Froment, S. Seguin and M. Jouvet, Effets de la p-chlorophenylalanine et du 5-hydroxytryptophane sur le souuaeil et le métabolisme central des monoamines et des proteines chez le chat, Biochem. Pharmacol. 22: 3077 (1973).

    CAS  Google Scholar 

  46. M. Jouvet and J.F. Pujol, Effects of central alterations of serotoninergic neurons upon the sleep-waking cycle, Adv. Biochem. Psychopharmacol. 11: 199 (1974).

    CAS  Google Scholar 

  47. D. Stein, M. Jouvet and J.F. Pujol, Effects of a-methyl-p-tyrosine upon cerebral amine metabolism and sleep states in the cat, Brain Res. 72: 360 (1974).

    Article  PubMed  CAS  Google Scholar 

  48. F. Petitjean, R. Laguzzi, F. Sordet, M. Jouvet and J.F. Pujol, Effets de l’injection intraventriculaire de 6-hydroxy-dopamine. I - Sur les monoamines cérébrales du chat, Brain Res. 48: 281 (1972).

    Article  PubMed  CAS  Google Scholar 

  49. F. Petitjean, K. Sakai, C. Blondaux and M. Jouvet, Hypersomnie par lésion isthmique chez le chat. II - Etude neurophysiologique et pharmacologique, Brain Res. 88: 439 (1975).

    Article  PubMed  CAS  Google Scholar 

  50. J.F. Pujol, D. Stein, C. Blondaux, F. Petitjean, J.L. Froment and M. Jouvet, Biochemical evidences for interaction phenomena between noradrenergic and serotoninergic systems in the cat brain, in: “Frontiers in catecholamine research”, E. Usdin and S. Snyder, ed., Pergamon Press, New York (1973).

    Google Scholar 

  51. M.J. Brownstein, M. Palkovits, J.M. Saavedra and J.S. Kizer, Tryptophan hydroxylase in the rat brain, Brain Res. 97: 163 (1975).

    Article  PubMed  CAS  Google Scholar 

  52. M. Palkovits, M. Brownstein and J.M. Saavedra, Serotonin content of the brain stem nuclei of the rat, Brain Res., 80: 237 (1974).

    Article  PubMed  CAS  Google Scholar 

  53. L. Leger and L. Descarries, Serotonin nerve terminals in the locus coeruleus of adult rat: a radioautographic study, Brain Res., 145: 1 (1978).

    Article  PubMed  CAS  Google Scholar 

  54. V.M. Pickel, T.H. Joh and D.J. Reis, A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase, Brain Res. 131: 197 (1977).

    Article  PubMed  CAS  Google Scholar 

  55. B.D. Lewis, B. Renaud, M. Buda and J.F. Pujol, Time-course variations in tyrosine hydroxylase activity in the rat locus coeruleus after electrolytic destruction of the nuclei raphe dorsalis or raphe centralis, Brain Res. 108: 339 (1976).

    Article  PubMed  CAS  Google Scholar 

  56. B. Renaud, M. Buda, B.D. Lewis and J.F. Pujol, Effects of 5,6dihydroxytryptamine on tyrosine-hydrcxylase activity in central catecholaminergic neurons of the rat, Biochem. Pharmacol. 24: 1739 (1975).

    CAS  Google Scholar 

  57. P.E. Keane, A. Degueurce, B. Renaud, F. Crespi and J.F. Pujol, Alteration of tyrosine hydroxylase and dopamine-ß-hydroxylase activity in the locus coeruleus after 5,6-dihydroxytryptamine, Neurosci. Let. 8: 143 (1978).

    CAS  Google Scholar 

  58. A. McRae-Degueurce and J.F. Pujol, Correlation between the increase in tyrosine hydroxylase activity and the decrease in serotonin content in the rat locus coeruleus after 5,6dihydroxytryptamine, Europ. J. Pharmacol., in press.

    Google Scholar 

  59. J.F. Pujol, A. McRae-Degueurce, F. Crespi, P.E. Keane, B. Renaud, L. Leger and M. Buda, Serotoninergic control of tyrosine-hydroxylase (TH) and dopamine-ß-hydroxylase (DBH) in the rat locus coeruleus (LC), in: “Catecholamines: basic and clini-dal frontiers”, vol. 1, E. Usdin, I.J. Kopin and J. Barchas, ed., Pergamon Press (1978).

    Google Scholar 

  60. A. Degueurce, L. Wiklund, L. Leger and J.F. Pujol, Evidences of functional serotoninergic reinnervation in rat locus coeruleus following 5,6-DHT and 5,7-DHT induced denervation, Paper presented at the IIIrd European Neuroscience Association, Annual Meeting, september 1979.

    Google Scholar 

  61. C. Blondaux, M. Buda, F. Petitjean and J.F. Pujol, Hypersomnie par lésion isthmique chez le chat. I - Etude du métabolisme des monoamines cérébrales, Brain Res. 88: 425 (1975).

    Article  PubMed  CAS  Google Scholar 

  62. W. Kostowski, R. Samanin, S.R. Bareggi, V. Marc, S. Garattini and L. Valzelli, Biochemical aspects of the interaction between midbrain raphe and locus coeruleus in the rat, Brain Res. 82: 178 (1974).

    Article  PubMed  CAS  Google Scholar 

  63. M.F. Belin, M. Aguera, M. Tappaz, A. McRae-Degueurce, P. Bobillier and J.F. Pujol, GABA-accumulating neurons in the nucleus raphe drosalis and periaqueductal gray in the rat: a biochemical and radioautographic study, Brain Res. 170: 279 (1979).

    Article  PubMed  CAS  Google Scholar 

  64. J.F. Pujol, M.F. Belin, H. Gamrani, M. Aguera and A. Calas, Anatomical evidence for GABA-5 HT interaction in serotoninergic neurons, this symposium.

    Google Scholar 

  65. T. Hökfelt, A. Ljungdahl, H. Steinbusch, A. Verhofstad, G. Nilsson, E. Brodin, B. Pernow and M. Goldstein, Iiiuuunohistochemical evidence of substance p-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous system, Neuroscience 3: 517 (1978).

    Article  PubMed  Google Scholar 

  66. V. Chan-Palay, G. Jonsson and S.L. Palay, On the coexistence of serotonin and substance P in neurons of the rat’s central nervous system, Proc. Nat. Acad. Sci., U.S.A. 75: 1582 (1978).

    Article  CAS  Google Scholar 

  67. G.K. Aghajanian and R.Y. Wang, Physiology and pharmacology of central serotonergic neurons, in: “Psychopharmacology: a generation of progress”, M.A. Lipton, A. Dimascio and K.F. Killam, ed., Raven Press, New York (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Pujol, JF., Degueurce, A., Natali, JP., Tappaz, M., Wiklund, L., Leger, L. (1981). The Serotonin Connection: Some Evidence for a Specific Metabolic Organization. In: Haber, B., Gabay, S., Issidorides, M.R., Alivisatos, S.G.A. (eds) Serotonin. Advances in Experimental Medicine and Biology, vol 133. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3860-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3860-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3862-8

  • Online ISBN: 978-1-4684-3860-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics