Skip to main content

The Relationship between Strontium and other Divalent Cations in the Process of Transmitter Release from Cholinergic Nerve Endings

  • Chapter
Handbook of Stable Strontium

Abstract

It is well established at present that Ca2+ is responsible for mediating an enormous variety of intricate biological activities. In most systems studied, Sr2+ can serve as a simple, effective substitute for Ca2+ in supporting the particular biological behavior [e.g., Sr2+ can substitute for Ca2+ as a carrier of transmembrane current across excitable cells (1)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Reuter, Divalent cations as charge carriers in excitable membranes, Prog. Biophys. Mol. Biol. 26, 1–41 (1973).

    Article  CAS  Google Scholar 

  2. B. Katz, The Release of Neural Transmitter Substances, University Press, Liverpool (1969).

    Google Scholar 

  3. J. del Castillo and B. Katz, Quantal components of the end-plate potential, J. Physiol (London) 124, 560–573 (1954).

    Google Scholar 

  4. E. M. Silinsky, On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals, J. Physiol. (London) 247, 145–162 (1975).

    CAS  Google Scholar 

  5. E. M. Silinsky, Evidence for specific adenosine receptors at cholinergic nerve endings. Br. J. Pharmacol. 70, in press (1981).

    Google Scholar 

  6. J. I. Hubbard, Microphysiology of vertebrate neuromuscular transmission, Physiol. Rev. 53, 674–723 (1973).

    CAS  Google Scholar 

  7. B. L. Ginsborg and D. H. Jenkinson, Transmission of impulses from nerve to muscle, in: Neuromuscular Junction, Handbook of Experimental Pharmacology (E. Zaimis, ed.), pp. 229–364, Springer-Verlag, Berlin, Heidelberg, New York (1976).

    Google Scholar 

  8. F. A. Dodge, Jr. and R. Rahamimoff, Co-operative action of Ca ions in transmitter release at the neuromuscular junction, J. Physiol. (London) 193, 419–432 (1967).

    CAS  Google Scholar 

  9. R. Miledi, Strontium as a substitute for calcium in the process of transmitter release at the neuromuscular junction, Nature (London) 212, 1233–1234 (1966).

    Article  CAS  Google Scholar 

  10. F. A. Dodge, Jr., R. Miledi, and R. Rahamimoff, Strontium and quantal release of transmitter at the neuromuscular junction, J. Physiol. (London) 200, 267–283 (1969).

    CAS  Google Scholar 

  11. U. Meiri and R. Rahamimoff, Activation of transmitter release by strontium and calcium ions at the neuromuscular junction, J. Physiol. (London) 215, 709–726 (1978).

    Google Scholar 

  12. E. M. Silinsky, Can barium support the release of acetylcholine by nerve impulses? Br. J. Pharmacol. 59, 215–217 (1977).

    CAS  Google Scholar 

  13. E. M. Silinsky, On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses, J. Physiol. (London) 274, 157–171 (1978).

    CAS  Google Scholar 

  14. E. M. Silinsky, Enhancement by an antagonist of transmitter release from frog motor nerve terminals, Br. J. Pharmacol. 63, 485–493 (1978).

    CAS  Google Scholar 

  15. J. del Castillo and B. Katz, The effect of magnesium on the activity of motor nerve endings, J. Physiol. (London) 124, 553–559 (1954).

    Google Scholar 

  16. D. H. Jenkinson, The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction, J. Physiol. (London) 138, 434–444 (1957).

    CAS  Google Scholar 

  17. U. Meiri and R. Rahamimoff, Neuromuscular transmission: Inhibition by manganese ions, Science 176, 308–309 (1972).

    Article  CAS  Google Scholar 

  18. R. J. Balnave and P. W. Gage, Inhibitory effects of manganese on transmitter release at neuromuscular junction of toad, Br. J. Pharmacol. 47, 339–350 (1973).

    CAS  Google Scholar 

  19. J. N. Weakly, The action of cobalt ions on neuromuscular transmission in the frog, J. Physiol. (London) 234, 597–612 (1973).

    CAS  Google Scholar 

  20. A. C. Crawford, The dependence of evoked transmitter release on external calcium ions at very low mean quantal contents, J. Physiol. (LondonI 240, 255–278 (1974).

    CAS  Google Scholar 

  21. E. M. Silinsky, An estimate of the equilibrium dissociation constant for calcium as an antagonist of evoked acetylcholine release: Implications for excitation-secretion coupling, Br. J. Pharmacol. 61, 691–693 (1977).

    CAS  Google Scholar 

  22. a. E. D. Kharasch, A. M. Mellow, and E. M. Silinsky, Intracellular magnesium does not antagonize calcium-dependent acetylcholine secretion. J. Physiol. (London), in press (1981).

    Google Scholar 

  23. J. del Castillo and B. Katz, Statistical factors involved in neuromuscular facilitation and depression, J. Physiol (London) 124, 574–585 (1954).

    Google Scholar 

  24. M. Braun, R. F. Schmidt, and M. Zimmermann, Facilitation at the frog neuromuscular junction during and after repetitive stimulation, Pflügers Arch. 287, 41–55 (1966).

    Article  CAS  Google Scholar 

  25. R. Miledi and R. Thies, Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low calcium solutions, J. Physiol. (London) 212, 245–251 (1971).

    CAS  Google Scholar 

  26. W. P. Hurlbut, H. B. Longnecker, and A. Mauro, Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization, J. Physiol. (London) 219, 17–38 (1971).

    CAS  Google Scholar 

  27. E. M. Silinsky, A. M. Mellow, and T. E. Phillips, Conventional calcium channel mediates asynchronous acetylcholine release by motor nerve impulses, Nature (London) 270, 528–530 (1977).

    Article  CAS  Google Scholar 

  28. A. M. Mellow and E. M. Silinsky, Interactions between strontium and calcium in the process of evoked transmitter release at the frog neuromuscular junction, Soc. Neurosci. 4, 372 (1978).

    Google Scholar 

  29. D. A. Haydon and S. B. Hladky, Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems, Q. R. Biophys. 5, 187–282 (1972).

    Article  CAS  Google Scholar 

  30. A. L. Hodgkin, The Conduction of the Nerve Impulse, Charles C Thomas, Springfield, Ill. (1964).

    Google Scholar 

  31. B. Katz and R. Miledi, Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol (London) 203, 459–487 (1969).

    CAS  Google Scholar 

  32. D. M. J. Quastel, Excitation-secretion coupling at the mammalian neuromuscular junction, in: Sympatic Transmission and Neuronal Interaction, Raven Press, New York (1974).

    Google Scholar 

  33. J. H. Gaddum, Theories of drug antagonism, Pharmacol Rev. 9, 211–218 (1957).

    CAS  Google Scholar 

  34. R. P. Stephenson and R. B. Barlow, Concepts of drug action, quantatative pharmacology and biological assay, in: A Companion to Medical Studies (R. Passmore and J. S. Robson, eds.), Chapter 3, pp. 1–19, Blackwell, Oxford (1970).

    Google Scholar 

  35. E. M. McLachlan, The effects of strontium and barium ions at synapses in sympathetic ganglia, J. Physiol (London) 267, 497–518 (1977).

    CAS  Google Scholar 

  36. A. M. Mellow, T. E. Phillips, and E. M. Silinsky, On the conductance pathway traversed by strontium in mediating the asynchronous release of acetylcholine by motor nerve impulses, Br. J. Pharmacol. 63, 239–252 (1978).

    Google Scholar 

  37. R. V. Muller and A. Finkelstein, The electrostatic basis of Mg inhibition of transmitter release, Proc. Natl. Acad. Sci. USA 71, 923–926 (1974).

    Article  CAS  Google Scholar 

  38. H. S. Sherry, The ion exchange properties of zeolites, in: Ion Exchange II (M. Dekker, ed.) pp. 89–153, Academic Press, New York (1968).

    Google Scholar 

  39. J. M. Diamond and E. M. Wright, Biological membranes: The physical basis of ion and non-electrolyte selectivity, Annu. Rev. Physiol. 31, 581–646 (1969).

    Article  CAS  Google Scholar 

  40. R. Rahamimoff, A dual effect of calcium ions on neuromuscular facilitation, J. Physiol. (London) 195, 471–480 (1968).

    CAS  Google Scholar 

  41. R. Rahamimoff and Y. Yaari, Delayed release of transmitter at the frog neuromuscular junction, J. Physiol (London) 228, 241–257 (1973).

    CAS  Google Scholar 

  42. P. F. Baker, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol. 24, 177–213 (1972).

    Article  CAS  Google Scholar 

  43. B. C. Pressman, Properties of ionophores with broad range cation selectivity, Fed. Proc. 32, 1698–1703 (1973).

    CAS  Google Scholar 

  44. A. M. Mellow, Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarized nerve terminals. Nature (London) 282, 84–85 (1979).

    Article  CAS  Google Scholar 

  45. H. Kita and W. Van der Kloot, Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction, J. Physiol. (London) 259, 177–198 (1976).

    CAS  Google Scholar 

  46. R. Llinas, I. Z. Steinberg, and K. Walton, Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate, Proc. Natl Acad. Sci. USA 73, 2918–2922 (1976).

    Article  CAS  Google Scholar 

  47. R. R. Llinas, Calcium and transmitter release in squid synapse, in: Approaches in the Cell Biology of Neurons (W. M. Cowan, and J. A. Ferrendelli, eds.), Society for Neuroscience, Rockville, Md., (1977).

    Google Scholar 

  48. C. S. Lewis, The Silver Chair, Macmillan, New York, (1953).

    Google Scholar 

  49. E. M. McLachlan, Electrophysiological evidence for the second store of ACh in preganglionic nerve terminals, Brain Res. 98, 373–376 (1975).

    Article  CAS  Google Scholar 

  50. A. L. Lehninger, Mitochondria and calcium ion transport, Biochem. J. 119, 129–138 (1970).

    CAS  Google Scholar 

  51. I. M. Glagoleva, E. A. Liberman, and Z. Kh-M. Khashaev, Effect of uncouplers of oxidative phosphorylation on output of acetylcholine from nerve endings, Biofizika 15, 76–83 (1970).

    CAS  Google Scholar 

  52. A. L. Mackay, A Selection of Scientific Quotations, Institute of Physics, Bristol, London (1977).

    Google Scholar 

  53. E. M. Silinsky, A reevaluation of the behaviour of divalent cation agonists at motor nerve endings. Br. J. Pharmacol 61, 594 P (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Silinsky, E.M., Mellow, A.M. (1981). The Relationship between Strontium and other Divalent Cations in the Process of Transmitter Release from Cholinergic Nerve Endings. In: Skoryna, S.C. (eds) Handbook of Stable Strontium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3698-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3698-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3700-3

  • Online ISBN: 978-1-4684-3698-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics