Skip to main content

Abstract

The electric dichroism of bacteriorhodopsin has been studied by subjecting suspensions of purple membrane fragments (mean diameter ~ 0.5 µm) to pulsed electric fields. The reduced dichroism as a function of varying orientation of the purple membrane sheets was calculated, taking the P3 symmetry of the arrangement of bacteriorhodopsin molecules into account. The results for this symmetrical trimer model are different from those derived from the monomeric model used by others, showing that the latter underestimates the angle between the normal to the membrane plane and chromophore transition moment by several degrees. Analysis of the experiments in terms of the trimer model restricts the allowed transition moment orientations to either one or the other of two ranges of angles, according to whether the planes of the membrane fragments orient parallel or perpendicular to the imposed electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oesterhelt D and Stoeckenius W, Nature New Biol., 233, (1971) 149.

    CAS  Google Scholar 

  2. Oesterhelt D and Stoeckenius W, Proc. Natl. Acad. Sci. U.S., 70, (1973) 2853.

    Article  CAS  Google Scholar 

  3. Danon A and Stoeckenius W, Proc. Natl. Acad. Sci. U.S., 71 (1974) 1234.

    Article  CAS  Google Scholar 

  4. Blaurock A E and Stoeckenius W, Nature New Biol., 233, (1971) 152.

    Article  CAS  Google Scholar 

  5. Henderson R and Unwin P N T, Nature, 257, (1975) 28.

    Article  CAS  Google Scholar 

  6. Henderson R, J. Mol. Biol., 93, (1975) 123.

    Article  CAS  Google Scholar 

  7. Blaurock A E, J. Mol. Biol., 93, (1975) 139.

    Article  CAS  Google Scholar 

  8. Heyn M P, Cherry R J and Muller U, J. Molec. Biol., 117, (1977) 607.

    Article  CAS  Google Scholar 

  9. Korenstein R and Hess B, FEBS Lett., 89, (1978) 15.

    Article  CAS  Google Scholar 

  10. Bogomolni R A, Hwang S B, Tseng Y W, King G I and Stoeckenius W, Biophys. J., 17, (1977) 98a.

    Google Scholar 

  11. Fredericq E and Houssier C, “Electric Dichroism and Electric Birefringence”, Oxford University Press, London (1973).

    Google Scholar 

  12. Neugebauer D-C, Blaurock A E and Worcester D L, FEBS Lett., 78, (1977) 31.

    Article  CAS  Google Scholar 

  13. Shinar R, Druckmann S, Ottolenghi M and Korenstein R, Biophys. J., 19, (1977) 1.

    Article  CAS  Google Scholar 

  14. Heyn M P, Bauer P J and Dencher N A, “Biochemistry of Membrane Transport”, Semenza G and Carafoli E, eds., Springer-Verlag, Heidelberg (1977) p. 96.

    Chapter  Google Scholar 

  15. Cherry R J, Muller U and Schneider G, FEBS Lett., 80, (1977) 465.

    Article  CAS  Google Scholar 

  16. Razi Naqvi K, Gonzalez-Rodriguez J, Cherry R J and Chapman D, Nature New Biol., 245, (1973) 249.

    Article  CAS  Google Scholar 

  17. Corben H C and Stehle P, “Classical Mechanics”, John Wiley & Sons, Inc., New York (1950) p. 174.

    Google Scholar 

  18. Oesterhelt D and Stoeckenius W, Meth. Enzymol., 31, (1974) 667.

    Article  CAS  Google Scholar 

  19. Oesterhelt D and Hess B, Eur. J. Biochem.,. 37, (1973) 316.

    Article  CAS  Google Scholar 

  20. Rigler R, Rabl C R and Jovin T M, Rev. Sci. Instrum., 45, (1974) 580.

    Article  CAS  Google Scholar 

  21. Yoshioka K and Watanabe H, “Physical Principles and Techniques of Protein Chemistry, Part A”, Leach S J, ed., Academic Press, New York (1969) p. 344.

    Google Scholar 

  22. Perrin F J, Phys. Radium., 7, (1926) 390.

    Article  CAS  Google Scholar 

  23. Wada A, “Poly- oc -Amino Acids”, Fasman G, ed., Marcel Dekker, New York (1967) p. 369.

    Google Scholar 

  24. Neumann E and Katchalsky A, Proc. Natl. Acad. Sci. U.S., 69, (1972) 993.

    Article  CAS  Google Scholar 

  25. O’Konski C T, Yoshioka K and Orttung W H, J. Phys. Chem., 63, (1959) 1558.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Tsuji, K., Rosenheck, K. (1979). Electric Dichroism of Purple Membrane. In: Jennings, B.R. (eds) Electro-Optics and Dielectrics of Macromolecules and Colloids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3497-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3497-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3499-6

  • Online ISBN: 978-1-4684-3497-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics