Skip to main content

Gastrointestinal Tissue

  • Chapter
Lipid Metabolism in Mammals

Part of the book series: Monographs in Lipid Research ((MLR))

Abstract

The intestinal absorption of lipids in mammals has been the subject of investigation for longer periods than any other area of lipid metabolism. The controversy which centeied around the various theories of absorption has been the subject of intense debate (Johnston, 1969). In the late 19th century two investigators, Munk (1900) and Pfluger (1900), set the stage for the two conflicting theories of fat absorption. These were referred to as the particulate and lipolytic theories. The center of controversy was focused on the nature of the chemical moiety which penetrates the intestinal mucosal cell. It has been recognized for many years that the major dietary lipid is triacylglycerol. Munk’s hypothesis suggested that a limited hydrolysis of ingested triacylglycerols occurred and the product absorbed was primarily triacylglycerol in the form of fine emulsified particles. In contrast, Pfluger subscribed to the theory that ingested triacylglycerols must be completely hydrolyzed to glycerol and the respective fatty acids before their absorption. Pfluger’s strong influence dominated the concepts for the mechanism of fat absorption starting at the beginning of the century. These concepts were further supported by the investigations of Verzár and McDougall (1936), who suggested that the formation of a fatty-acid-bile-salt complex was an important process associated with the absorptive process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ailhaud, G., Samuel, D., Lazdunski, M., and Desnuelle, P. 1964. Quelques observations sur le mode d’action de la monoglyceride transacylase et de la diglyceride transacylase de la muqueuse intestinale. Biochim. Biophys. Acta 84:643–644.

    PubMed  CAS  Google Scholar 

  • Arnesjo, B., and Grubb, A. as cited by Borgström, B. 1974. Fat digestion and absorption. Biomembranes 4B:556–620.

    Google Scholar 

  • Artom, C., and Reale, L. 1935. The formation of intermediate products in the pancreatic digestion of neutral fat. Arch. Sci. Biol, Bologna 21:368–380.

    CAS  Google Scholar 

  • Arvidson, G. A. E., and Nilsson, A. 1972. Formation of lymph chylomicron phosphatidylcholines in the rat during the absorption of safflower oil or triolein. Lipids 7:344–348.

    PubMed  CAS  Google Scholar 

  • Ashworth, C. T., and Johnston, J. M. 1963. The intestinal absorption of fatty acid: a biochemical and electron microscopic study. J. Lipid Res. 4:454–460.

    PubMed  CAS  Google Scholar 

  • Barrowman, J. A., and Darnton, S. J. 1970. The lipase of rat gastric mucosa. Gastroenterology 59:13–21.

    PubMed  CAS  Google Scholar 

  • Bar-Tana, J., and Shapiro, B. 1964. Studies on palmitoyl-coenzyme A synthetase. Biochem. J. 93:533–538.

    PubMed  CAS  Google Scholar 

  • Bavetta, L. A., Hallman, L., Deuel, H. J., and Greeley, P. O. 1941. The effect of adrenalectomy on fat absorption. Am. J. Physiol. 134:619–622.

    CAS  Google Scholar 

  • Belleville, J., and Clément, J. 1968. Comparaison de l’activité phospholipasique A de préparations du pancreas et du suc pancreatique sur les phospholipides liés aux lipoproteines dûr jaune d’oeuf et sur les phospholipides extraits due jaune d’oeuf. C. R.Acad. Sci. 266:959–962.

    CAS  Google Scholar 

  • Bernard, C. 1856. Mémoire sur le pancreas et sur le role du suc pancréatique dans la phénomenes digestifs, particulièrement dans la digestion des matières grasses neutres. Compt. Rend. Suppl. 43:379–563.

    Google Scholar 

  • Bickerstaffe, B., and Annison, E. F. 1969. Triglyceride synthesis by the small-intestinal epithelium of the pig, sheep, and chicken. Biochem. J. 111:419–429.

    PubMed  CAS  Google Scholar 

  • Blomstrand, R., and Forsgren, L. 1967. Intestinal absorption and esterification of vitamin D3–1,2–3H in man. Acta Chem. Scand. 21:1662–1663.

    PubMed  CAS  Google Scholar 

  • Blomstrand, R., and Forsgren, L. 1968. Vitamin K1–3H in man. Its intestinal absorption and transport in the thoracic duct lymph. Int. J. Vit. Res. 38:45–64.

    CAS  Google Scholar 

  • Borgström, B. 1954. On the mechanism of pancreatic lipolysis of glycerides. Biochim. Biophys. Acta 13:491–504.

    PubMed  Google Scholar 

  • Borgström, B. 1955. Studies on pancreatic lipase, pp. 179–186. In G. Popjakand, E. L. Breton (eds.). Biochemical Problems of Lipids. Butterworth, London.

    Google Scholar 

  • Borgström, B. 1974. Fat digestion and absorption. Biomembranes 4B:556–620.

    Google Scholar 

  • Brindley, D. N. 1974. The intracellular phase of fat absorption. Biomembranes 4B:621–671.

    PubMed  CAS  Google Scholar 

  • Brindley, D. N., and Ferner, P. 1972. Factors affecting acyl-CoA synthetase and glycerolipid synthesis in the small intestine, pp. 219–229. In W. L. Burland and P. D. Samuel (eds.) Transport Across the Intestine. Churchills, London.

    Google Scholar 

  • Brindley, D. N., and Hübscher, G. 1965. The intracellular distribution of the enzymes catalyzing the biosynthesis of glycerides in the intestinal mucosa. Biochim. Biophys. Acta 106:495–509.

    PubMed  CAS  Google Scholar 

  • Brindley, D. N., and Hübscher, G. 1966. The effect of chain length on the activation and subsequent incorporation of fatty acids into glycerides by the small intestinal mucosa. Biochim. Biophys. Acta 125:92–105.

    PubMed  CAS  Google Scholar 

  • Brockerhoff, H. 1974. Regulation of enzyme activity by enzyme orientation: A hypothesis. Bioorg. Chem. 3:176–183

    CAS  Google Scholar 

  • Brockerhoff, H., and Jensen, R. G. 1974. Lipolytic Enzymes. Academic Press, Inc., New York, 330 pp.

    Google Scholar 

  • Brown, J. L., and Johnston, J. M. 1964a. The mechanism of intestinal utilization of monoglyc-erides. Biochim. Biophys. Acta 84:264–274.

    PubMed  CAS  Google Scholar 

  • Brown, J. L., and Johnston, J. M. 1964b. The utilization of 1- and 2-monoglycerides for intestinal triglyceride biosynthesis. Biochim. Biophys. Acta 84:448–457.

    PubMed  CAS  Google Scholar 

  • Brown, M. S., Faust, J. R., and Goldstein, J. L. 1975. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J. Clin. Invest. 55:783–793.

    PubMed  CAS  Google Scholar 

  • Cardell, R. R., Badenhausen, S., and Porter, K. R. 1967. Intestinal triglyceride absorption in the rat. An electron microscopical study. J. Cell Biol. 34:123–156.

    PubMed  CAS  Google Scholar 

  • Cayen, M. N. 1971. Effect of dietary tomatine on cholesterol metabolism in the rat. J. Lipid Res. 12:482–490.

    PubMed  CAS  Google Scholar 

  • Clark, B., and Hübscher, G., 1961. Biosynthesis of glycerides in subcellular fractions of intestinal mucosa. Biochim. Biophys. Acta 46:479–494.

    PubMed  CAS  Google Scholar 

  • Clark, B., and Hübscher, G. 1963. Monoglyceride transacylase of rat-intestinal mucosa. Biochim. Biophys. Acta 70:43–52.

    PubMed  CAS  Google Scholar 

  • Clément, G. 1964. La digestion et l’absorption des graisses. J. Physiol. (Paris) 56:111–192.

    Google Scholar 

  • Cohen, M., Morgan, R. G. H., and Hofmann, A. F. 1968. The lipolytic activity of human gastric juice. Fed. Proc. 27:574.

    Google Scholar 

  • Coleman, R., and Hübscher, G. 1962. Metabolism of phospholipids. V. Studies of phosphatidic acid phosphatase. Biochim. Biophys. Acta 56:479–490.

    PubMed  CAS  Google Scholar 

  • Coniglio, J. G., and Cate, D. L. 1958. The distribution and biosynthesis of palmitic and stearic acids in liver, intestine, and carcass of intact normal fasted rats. J. Biol. Chem. 232:361–368.

    PubMed  CAS  Google Scholar 

  • Dainty, J. 1963. Water relations of plant cells. Adv. Botan. Res. 1:279–282.

    CAS  Google Scholar 

  • David, J. S. K., and Ganguly, J. 1967. Further studies on the mechanism of absorption of vitamin A and cholesterol. Indian J. Biochem. 4:14–17.

    PubMed  CAS  Google Scholar 

  • De Haas, G. H., Postema, N. M., Nieuwenhuizen, W., and Van Deenan, L. L. M. 1968. Purification and properties of an anionic zymogen of phospholipase A from porcine pancreas. Biochim. Biophys. Acta 159:118–129.

    PubMed  Google Scholar 

  • De Haas, G. H., Slotboom, A. J., Bonsen, P. P. M., Nieuwenhuizen, W., Van Deenen, L. L. M., Maroux, S., Dlouha, V., and Desnuelle, P. 1970. Studies on phospholipase A and its zymogen from porcine pancreas. II. The assignment of the position of the six disulfide bridges. Biochim. Biophys. Acta 221:54–61.

    PubMed  Google Scholar 

  • De Luca, H. F. 1974. Vitamin D: the vitamin and the hormone. Fed. Proc. 33:2211–2219.

    Google Scholar 

  • Dermer, G. B. 1968. An autoradiographic and biochemical study of oleic acid absorption by intestinal slices including determinations of lipid loss during preparation for electron microscopy. J. Ultrastruct. Res. 22:312–325.

    PubMed  CAS  Google Scholar 

  • Desnuelle, P. 1968. Pancreatic lipase. Handbk. Physiol. 5:2629–2636.

    Google Scholar 

  • Dietschy, J. M. 1968a. Mechanisms for the intestinal absorption of bile acids. J. Lipid Res. 9:297–309.

    PubMed  CAS  Google Scholar 

  • Dietschy, J. M. 1968b. The role of bile salts in controlling the rate of intestinal cholesterogene-sis. J. Clin. Invest. 47:286–300.

    PubMed  CAS  Google Scholar 

  • Dietschy, J. M. 1969. The role of the intestine in the control of cholesterol metabolism. Gastroenterology 57:461–464.

    PubMed  CAS  Google Scholar 

  • Dietschy, J. M., and Siperstein, M. D. 1965. Cholesterol synthesis by the gastrointestinal tract; localization and mechanisms of control. J. Clin. Invest. 44:1311–1327.

    PubMed  CAS  Google Scholar 

  • Dietschy, J. M., and Wilson, J. D. 1968. Cholesterol synthesis in the squirrel monkey:relative rates of synthesis in various tissues and mechanisms of control. J. Clin. Invest. 47:166–174.

    PubMed  CAS  Google Scholar 

  • Dietschy, J. M., Sallee, V. L., and Wilson, F. A. 1971. Unstirred water layers and absorption across the intestinal mucosa. Gastroenterology 61:932–934.

    PubMed  CAS  Google Scholar 

  • Dobbins, W. O. 1966. An ultrastructural study of the intestinal mucosa in congenital β -lipoprotein deficiency with particular emphasis upon the intestinal absorptive cell. Gastroenterology 50:195–210.

    Google Scholar 

  • Dobbins, W. O.1969. Morphologic aspects of lipid absorption. Am. J. Clin. Nutr. 22:257–265.

    PubMed  Google Scholar 

  • Drummond, J. C., Bell, M. E., and Palmer, E. T. 1935. Observations on absorption of carotene and vitamin A. Br. Med. J. 1:1208–1210.

    PubMed  CAS  Google Scholar 

  • Entressangles, B., and Desnuelle, P. 1968. Action of pancreatic lipase on aggregated glyceride molecules in an isotropic system. Biochim. Biophys. Acta 159:285–295.

    PubMed  CAS  Google Scholar 

  • Erlanson, C. and Borgström, B. 1968. The identity of vitamin A esterase activity of rat pancreatic juice. Biochim. Biophys. Acta 167:629–631.

    PubMed  CAS  Google Scholar 

  • Erlanson, C., Fernlund, P., and Borgström, B. 1973. Purification and characterization of two proteins with co-lipase activity from porcine pancreas. Biochim. Biophys. Acta 310:437–445.

    PubMed  CAS  Google Scholar 

  • Erlanson, C., Charles, M., Astier, M., and Desnuelle, P. 1974. The primary structure of co-lipase II. Biochim. Biophys. Acta. 359:198–203.

    PubMed  CAS  Google Scholar 

  • Forstner, G. G., Riley, E. M., Daniels, S. J., and Isselbacher, K. J. 1965. Demonstration of glyceride synthesis by brush borders of intestinal epithelial cells. Biochem. Biophys. Res. Commun. 21:83–88.

    PubMed  CAS  Google Scholar 

  • Frank, O. 1898. Zür Lehre von der Fettresorption. Z Biol. 36:568–593.

    CAS  Google Scholar 

  • Franks, J. J., Riley, E. M., and Isselbacher, K. J. 1966. Synthesis of fatty acids by rat intestine in vitro. Proc. Soc. Exp. Biol. Med. 121:322–327.

    CAS  Google Scholar 

  • Frazer, A. C. 1938. Fat absorption and metabolism. Analyst 63:308–314.

    CAS  Google Scholar 

  • Frazer, A. C., and Sammons, H. G. 1945. The formation of mono- and diglycerides during the hydrolysis of triglycerides by pancreatic lipase. Biochem. J. 39:122–128.

    PubMed  CAS  Google Scholar 

  • Freudenberg, E. 1966. A lipase in the milk of the gorilla. Experientia 22:317.

    PubMed  CAS  Google Scholar 

  • Gagnon, M., and Dawson, A. M. 1968. The effect of bile on vitamin A absorption in the rat. Proc. Soc. Exp. Biol. Med. 127:99–102.

    PubMed  CAS  Google Scholar 

  • Gallo, L., and Treadwell, C. R. 1970. Localization of the monoglyceride pathway in subcellular fractions of rat intestinal mucosa. Arch. Biochem. Biophys. 141:614–621.

    PubMed  CAS  Google Scholar 

  • Gangl, A., and Ockner, R. K. 1975. Intestinal metabolism of lipids and lipoproteins. Gastroenterology 68:167–186.

    PubMed  CAS  Google Scholar 

  • Ganguly, J. 1969. Absorption of vitamin A. Am. J. Clin. Nutr. 22:923–933.

    PubMed  CAS  Google Scholar 

  • Gelb, A. M., Davidson, M. I., and Kessler, J. I. 1964. Effect of fasting on esterification of fatty acids by the small intestine in vitro. Am. J. Physiol. 207:1207–1210.

    PubMed  CAS  Google Scholar 

  • Glickman, R. M. 1976. Chylomicron formation by the intestine. In K. Rommil (ed.). Biochemical and Clinical Aspects of Lipid Absorption. Titisee. F. K. Schattauer Verlag, Stuttgart-New York.

    Google Scholar 

  • Glickman, R. M., and Kirsch, K. 1973. Lymph chylomicron formation during the inhibition of protein synthesis. J. Clin. Invest. 52:2910–2920.

    PubMed  CAS  Google Scholar 

  • Glickman, R. M., Kirsch, K., and Isselbacher, K. J. 1972. Fat absorption during inhibition of protein synthesis; studies of lymph chylomicrons. J. Clin. Invest. 51:356–363.

    PubMed  CAS  Google Scholar 

  • Glover, J., and Morton, R. A. 1958. The absorption and metabolism of sterols. Br. Med. Bull. 14:226–233.

    PubMed  CAS  Google Scholar 

  • Goodman, D. S., Huang, H. S., and Shiratori, T. 1966. Mechanism of the biosynthesis of vitamin A from β -carotene. J. Biol. Chem. 241:1929–1932.

    PubMed  CAS  Google Scholar 

  • Gordon, S. 1963. The role of bile salts in absorption and metabolism of fatty acid and monoglyceride by hamster jejunum. Dissertation.

    Google Scholar 

  • Gordon, S. G. and Kern, F. 1968. The absorption of bile salt and fatty acid by hamster small intestine. Biochim. Biophys. Acta. 152:372–378.

    PubMed  CAS  Google Scholar 

  • Gould, R. G., Taylor, C. B., Hagerman, J. S., Warner, I., and Campbell, D. J. 1953. Cholesterol metabolism: I. Effect of dietary cholesterol on the synthesis of cholesterol in dog tissue in vitro. J. Biol. Chem. 201:519–528.

    PubMed  CAS  Google Scholar 

  • Gould, R. G., Jones, R. J., Leroy, G. V., Wissler, R. W. and Taylor, C. B. 1969. Absorbability of β -sitosterol in humans. Metabolism 18:652–662.

    PubMed  CAS  Google Scholar 

  • Gronowska-Senger, A., and Wolf, G. 1970. Effect of dietary protein on the enzyme from rat and human intestine which connects β -carotene to retinal. J. Nutr. 100:300–308.

    PubMed  CAS  Google Scholar 

  • Grundy, S. M., and Ahrens, E. H. 1969. Measurements of cholesterol turnover, synthesis and absorption in man, carried out by isotope, kinetic, and sterol balance methods. J. Lipid Res. 10:91–107.

    PubMed  CAS  Google Scholar 

  • Gurr, M. I., Brindley, D. N., and Hübscher, G. 1965. Metabolism of phospholipids VIII. Biosynthesis of phosphatidylcholine in the intestinal mucosa. Biochim. Biophys. Acta 98:486–501.

    PubMed  CAS  Google Scholar 

  • Hajra, A. K., and Agranoff, B. W. 1968a. Characterization of a 32P-labeled lipid from guinea pig liver mitochondria. J. Biol Chem. 243:1617–1622.

    PubMed  CAS  Google Scholar 

  • Hajra, A. K. and Agranoff, B. W. 1968b. Reduction of palmitoyl dihydroxyacetone phosphate by mitochondria. J. Biol. Chem. 243:3542–3543.

    PubMed  CAS  Google Scholar 

  • Hamosh, M., and Scow, R. O. 1973. Lingual lipase and its role in the digestion of dietary lipid. J. Clin. Invest. 52:88–95.

    PubMed  CAS  Google Scholar 

  • Hamosh, M., Klaeveman, H. L., Wolf, R. O., and Scow, R. O. 1975. Pharyngeal lipase and digestion of dietary triglyceride in man. J. Clin. Invest. 55:908–913.

    PubMed  CAS  Google Scholar 

  • Hatch, F. T., Hagopian, L. M., Rubenstein, J. J., and Canellos, G. P. 1963. Incorporation of labeled leucine into lipoprotein protein by rat intestinal mucosa (P). Circulation 28: 659.

    Google Scholar 

  • Hatch, F. T., Yashiro, A., Hagopian, L. M., and Rubenstein, J. J. 1966. Biosynthesis of lipoprotein by rat intestinal mucosa. J. Biol. Chem. 241:1655–1665.

    PubMed  CAS  Google Scholar 

  • Hernandez, H. H., Chaikoff, I. L., and Kiyasu, J. Y. 1955. Role of pancreatic juice in cholesterol absorption. Am. J. Physiol. 181:523–526.

    PubMed  CAS  Google Scholar 

  • Hernell, O., and Olivecrona, T. 1974. Human milk lipases II. Bile salt-stimulated lipase. Biochim. Biophys. Acta 369:234–244.

    PubMed  CAS  Google Scholar 

  • Hewitt, W. 1954. A histochemical study of fat absorption in the small intestine of the rat. Q. J. Microsc. Sci. 95:153–157.

    Google Scholar 

  • Higgins, J. A., and Barnett, R. J. 1971. Fine structural localization of acyltransferases. The monoglyceride and α-glycerophosphate pathways in intestinal absorptive cells. J. Cell. Biol. 50:102–120.

    PubMed  CAS  Google Scholar 

  • Hoffman, N. E., Simmonds, W. J., and Morgan, R. G. H. 1971. A comparison of absorption of free fatty acid and α-glyceryl ether in the presence and absence of a micellar phase. Biochim. Biophys. Acta 231:487–495.

    PubMed  CAS  Google Scholar 

  • Hofmann, A. F. 1964. Micelle formation and intestinal absorption. Dissertation, Lund.

    Google Scholar 

  • Hofmann, A. F., and Small, D. S. 1967. Detergent properties of bile salts: Correlation with physiological function. Ann. Rev. Med. 18:333–376.

    PubMed  CAS  Google Scholar 

  • Holt, P. R., Haessler, H. A., and Isselbacher, K. J. 1965. Effect of lipid absorption on glucose metabolism by slices of hamster small intestine. Am. J. Physiol. 208:324–328.

    PubMed  CAS  Google Scholar 

  • Hoving, J., and Valkema, A. J., 1969. Effect of dietary fat content on the site of fat absorption in hamster small intestine in vitro. Biochim. Biophys. Acta 187:53–58.

    PubMed  CAS  Google Scholar 

  • Hübscher, G. 1970. Glyceride metabolism, pp. 280–370. In S.J. Wakil (ed.). Lipid Metabolism. Academic Press, Inc., New York.

    Google Scholar 

  • Hyams, D. E., Sabesin, S. M., Greenberger, N. J., and Isselbacher, K. J. 1966. Inhibition of intestinal protein synthesis and lipid transport by ethionine. Biochim. Biophys. Acta 125:166–173.

    PubMed  CAS  Google Scholar 

  • Iemhoff, W. G. J., and Hülsmann, W. C. 1971. Development of mitrochondrial enzyme activities in rat-small-intestinal epithelium. Eur. J. Biochem. 23:429–434.

    PubMed  CAS  Google Scholar 

  • Isselbacher, K. J. 1965. Metabolism and transport of lipid by intestinal mucosa. Fed. Proc. 24:16–22.

    PubMed  CAS  Google Scholar 

  • Jaques, L. B., Millar, G. L., and Spinks, J. W. T. 1954. The metabolism of the K-vitamins. Schweiz. Med. Wschr. 84:792–796.

    PubMed  CAS  Google Scholar 

  • Jedeikin, L. A., and Weinhouse, S. 1954. Studies of the incorporation of palmitate-1-C14 into tissue lipids in vitro. Arch Biochem. Biophys. 50:134–147.

    PubMed  CAS  Google Scholar 

  • Jersild, R. A. 1966. A time sequence study of fat absorption in the rat jejunum. Am. J. Anat. 118:135–162.

    PubMed  CAS  Google Scholar 

  • Jersild, R. A. 1969. A comparison of fat absorption in the jejunum and ileum. Anat. Rec. 163:204–205.

    Google Scholar 

  • Johnston, J. M. 1959. The absorption of fatty acids by the isolated intestine. J. Biol. Chem. 234:1065–1067.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M. 1963. Recent developments in the mechanism of fat absorption. Adv. Lipid Res. 1:105–131.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M. 1967. Mechanism of fat absorption. Handbk. Physiol. 3:1353–1375.

    Google Scholar 

  • Johnston, J. M. 1969. Assimilation, distribution, and storage. Compr. Biochem. 18:1–18.

    Google Scholar 

  • Johnston, J. M. 1976. Triglyceride biosynthesis in the intestinal mucosa, pp. 38–42. In K. Rommil (ed.). Biochemical and Clinical Aspects of Lipid Absorption. Titisee. F. K. Schattauer Verlag, Stuttgart, New York.

    Google Scholar 

  • Johnston, J. M., and Bearden, J. H. 1962. Intestinal phosphatidate phosphatase. Biochim. Biophys. Acta 56:365–367.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., and Borgström, B. 1964. The intestinal absorption and metabolism of micellar solutions of lipids. Biochim. Biophys. Acta 84:412–423.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., and Brown, J. L. 1962a. The intestinal utilization of doubly labeled α-monopalmitin. Biochim. Biophys. Acta 59:500–501.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., and Brown, J. L. 1962b. Intestinal utilization of monoglycerides. pp. 211–216. In A. C. Frazer (ed.). Biochemical Problems of Lipids. Elsevier Publishing Co., New York.

    Google Scholar 

  • Johnston, J. M., and Rao, G. A. 1965. Triglyceride biosynthesis in the intestinal mucosa. Biochim. Biophys. Acta 106:1–9.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., Rao, G. A., and Reistad, R. 1965. Species difference in the synthesis of triglycerides from monoglycerides. Biochim. Biophys. Acta 98:432–434.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., Rao, G. A., Lowe, P. A., and Schwarz, B. E. 1967a. The nature of the stimulatory role of the supernatant fraction on triglyceride synthesis by the α-glycerophosphate pathway. Lipids 2:14–20.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., Rao, G. A., and Lowe, P. A. 1967b. The separation of the α-glycerophosphate and monoglyceride pathways in the intestinal biosynthesis of triglycerides. Biochim. Biophys. Acta 137:578–580.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., Paltauf, F., Schiller, C. M., and Schultz, L. D. 1970. The utilization of the α-glycerophosphate and monoglyceride pathways for phosphatidylcholine biosynthesis in the intestine. Biochim. Biophys. Acta 218:124–133.

    PubMed  CAS  Google Scholar 

  • Karvinen, E., and Miettinen, M. 1966. Effect of ethionine on the absorption of palmitic acid-1-C14 in the rat. Acta Physiol. Scand. 68:228–230.

    CAS  Google Scholar 

  • Kern, F., and Borgström, B. 1965. Quantitative study of the pathways of triglyceride synthesis by hamster intestinal mucosa. Biochim. Biophys. Acta 98:520–531.

    PubMed  CAS  Google Scholar 

  • Kornberg, A., and Pricer, W. E. 1953. Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J. Biol. Chem. 204:329–343.

    PubMed  CAS  Google Scholar 

  • Levi, A. J., Gatmaitan, Z., and Arias, I. M. 1969. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin sulfobromophthalein, and other anions. J. Clin. Invest. 48:2156–2167.

    PubMed  CAS  Google Scholar 

  • MacMahon, M. T., and Thompson, G. R. 1970. Comparison of the absorption of a polar lipid, oleic acid, and a non-polar lipid, α-tocopherol from mixed micellar solutions and emulsions. Eur. J. Clin. Invest. 1:161–166.

    PubMed  CAS  Google Scholar 

  • Mansbach, C. M. II. 1973. Complex lipid synthesis in hamster intestine. Biochim. Biophys. Acta 296:386–400.

    PubMed  CAS  Google Scholar 

  • McManus, J. P. A., and Isselbacher, K. J. 1970. Effect of fasting versus feeding on the rat small intestine. Gastroenterology 59:214–221.

    PubMed  CAS  Google Scholar 

  • Mishkin, S., Stein, L., Gatmaitan, Z., and Arias, I. M. 1972. The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem. Biophys. Res. Commun. 47:997–1003.

    PubMed  CAS  Google Scholar 

  • Mitchell, M. P., Brindley, D. N., and Hübscher, G. 1971. Properties of phosphatidate phosphohydrolase. Eur. J. Biochem. 18:214–220.

    PubMed  CAS  Google Scholar 

  • Moffa, D. J., Lotspeich, F. J., and Krause, R. F. 1970. Preparation and properties of retinal-oxidizing enzyme from rat intestinal mucosa. J. Biol. Chem. 245:439–447.

    PubMed  CAS  Google Scholar 

  • Munk, I. 1900, Zur Frage der Fettesorption. Z. Physiol. 14:121–125.

    Google Scholar 

  • Murthy, S. K., Mahadevan, S., and Ganguly, J. 1961. High cholesterol diet and esterification of cholesterol by the intestinal mucosa of rats. Arch. Biochem. Biophys. 95:176–180.

    PubMed  CAS  Google Scholar 

  • Negrel, R., and Ailhaud, G. 1975. Localization of the monoglyceride pathway enzymes in the villous tips of intestinal cells and their absence from the brush-border. FEBS Lett. 54:183–188.

    PubMed  CAS  Google Scholar 

  • Nilsson, A. 1968. Metabolism of sphingomyelin in the intestinal tract of the rat. Biochim. Biophys. Acta 164:575–584.

    PubMed  CAS  Google Scholar 

  • Nilsson, A. 1969. The presence of sphingomyelin-and ceramide-cleaving enzymes in the small intestinal tract. Biochim. Biophys. Acta 176:339–347.

    PubMed  CAS  Google Scholar 

  • Ockner, R. K., Pittman, J. P., and Yager, J. L. 1972a. Differences in the intestinal absorption of saturated and unsaturated long chain fatty acids. Gastroenterology 62:981–992.

    PubMed  CAS  Google Scholar 

  • Ockner, R. K., Manning, J. M., Poppenhausen, R. B., and Ho, W. K. L. 1972b. A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues. Science 177:56–58.

    PubMed  CAS  Google Scholar 

  • O’Doherty, P. J. A., Yousef, J. M. and Kuksis, A. 1972. Differential effect of puromycin on triglyceride and phospholipid biosynthesis in isolated mucosal cells. Fed. Proc. 31: A701.

    Google Scholar 

  • O’Doherty, P. J. A., Kakis, G., and Kuksis, A. 1973. Role of luminal lecithin in intestinal fat absorption. Lipids 8:249–255.

    PubMed  Google Scholar 

  • Palay, S. L., and Karlin, L. J. 1959. An electron microscope study of the intestinal villus. 2. The pathway of fat absorption. J. Biophys. Biochem. Cytol. 5:373–384.

    PubMed  CAS  Google Scholar 

  • Paltauf, F., and Johnston, J. M. 1971. The metabolism in vitro of enantiomeric 1–0-alkyl glycerols and 1,2-and 1,3-alkyl acyl glycerols in the intestinal mucosa. Biochim. Biophys. Acta 239:47–56.

    PubMed  CAS  Google Scholar 

  • Paltauf, F., Esfandi, F., and Holasek, A. 1974. Sterospecificity of lipases. Enzyme hydrolysis of enantiomeric alkyl diacylglycerols by lipoprotein lipase, lingual lipase and pancreatic lipase. FEBS Lett. 40:119–123.

    PubMed  CAS  Google Scholar 

  • Pflüger, E. 1900. Der gegenwartige Zustand der Lehr von der Verdauung und Resorption der Fette und ein Verurteilung der hiermit ver knüpften physiologischen Vivisectionen am Menschen. Arch. Ges. Physio. 82:303–380.

    Google Scholar 

  • Polheim, D., David, J. S. K., Schultz, F. M., Wylie, M. B., and Johnston, J. M. 1973. Regulation of triglyceride biosynthesis in adipose and intestinal tissue. J. Lipid Res. 14:415–421.

    PubMed  CAS  Google Scholar 

  • Policard, A. 1969. Sur les mécanismes cytophysiologiques de l’absorption des lipides par la muqueuse intestinale. Presse Med. 77:1028.

    Google Scholar 

  • Pope, J. L., McPherson, J. C., and Tidwell, H. C. 1966. A study of a monoglyceride-hydrolyzing enzyme of intestinal mucosa. J. Biol. Chem. 241:2306–2310.

    PubMed  CAS  Google Scholar 

  • Porte, D., Jr., and Entenman, C. 1965. Fatty acid metabolism in segments of rat intestine. Am. J. Physiol. 208:607–614.

    PubMed  CAS  Google Scholar 

  • Porter, H. P., and Saunders, D. R. 1971. Isolation of the aqueous phase of human intestinal contents during the digestion of a fatty meal. Gastroenterology 60:997–1007.

    PubMed  CAS  Google Scholar 

  • Powell, G. K., and McElveen, M. A. 1974. Effect of prolonged fasting on fatty acid re-esterification in rat intestinal mucosa. Biochim. Biophys. Acta 369:8–15.

    PubMed  CAS  Google Scholar 

  • Rao, G. A., and Johnston, J. M. 1966a. The involvement of bound-CoA in glyceride biosynthesis. Biochem. Biophys. Res. Commun. 24:696–700.

    PubMed  CAS  Google Scholar 

  • Rao, G. A., and Johnston, J. M. 1966b. Purification and properties of triglyceride synthetase from the intestinal mucosa. Biochim. Biophys. Acta 125:465–473.

    PubMed  CAS  Google Scholar 

  • Rao, G. A., and Johnston, J. M. 1967. Studies of the formation and utilization of bound CoA in glyceride biosynthesis. Biochim. Biophys. Acta 144:25–33.

    PubMed  CAS  Google Scholar 

  • Rao, G. A., Sorrels, M. F., and Reiser, R. 1970. Biosynthesis of triglycerides from triose phosphates by microsomes of intestinal mucosa. Lipids 5:762–764.

    PubMed  CAS  Google Scholar 

  • Reiser, R., and Williams, M. C. 1953. Dihydroxyacetone esters as precursors of triglycerides during intestinal absorption. J. Biol. Chem. 202:815–819.

    PubMed  CAS  Google Scholar 

  • Robbins, S. J., Small, D. M., and Donaldson, R. M. 1969. Triglyceride formation in intestinal microvillous membranes during fat absorption. J. Clin. Invest. 48:69A.

    Google Scholar 

  • Robbins, S. J., Small, D. M., Trier, J. S., and Donaldson, R. M., Jr. 1971. Localization of fatty acid re-esterification in the brush border region of intestinal absorptive cells. Biochim. Biophys. Acta 233:550–561.

    Google Scholar 

  • Rodgers, J. B. 1975. Lipid absorption in bile fistula rats. Lack of a requirement for biliary lecithin. Biochim. Biophys. Acta 398:92–100.

    PubMed  CAS  Google Scholar 

  • Rodgers, J. B. and Bochenek, W. 1970. Localization of lipid re-esterifying enzymes of the rat small intestine. Effects of jejunal removal on ileal enzyme activities. Biochim. Biophys. Acta 202:426–435.

    PubMed  CAS  Google Scholar 

  • Rodgers, J. B., Riley, E. M., Drummey, G. D., and Isselbacher, K. J. 1967. Lipid absorption in adrenalectomized rats: The role of altered enzyme activity in the intestinal mucosa. Gastroenterology 53:547–556.

    PubMed  CAS  Google Scholar 

  • Sabesin, S. M., and Isselbacher, K. J. 1965. Protein synthesis inhibition: Mechanism for the production of impaired fat absorption. Science 147:1149–1151.

    PubMed  CAS  Google Scholar 

  • Schachter, D., Finkelstein, J. D., and Kowarski, S. 1964. Metabolism of vitamin D and its intestinal absorption in the rat. J. Clin. Invest. 43:787–796.

    PubMed  CAS  Google Scholar 

  • Schiller, C. M., David, J. S. K. and Johnston, J. M. 1970. The subcellular distribution of triglyceride synthetase in the intestinal mucosa. Biochim. Biophys. Acta 210:489–492.

    PubMed  CAS  Google Scholar 

  • Schonheyder, F., and Volqvartz, K. 1946. The gastric lipase in man. Acta Physiol. Scand. 11:349–360.

    CAS  Google Scholar 

  • Schultz, F. M., and Johnston, J. M. 1971. The synthesis of higher glycerides via the monoglyc-eride pathway in hamster adipose tissue. J. Lipid Res. 12:132–138.

    PubMed  CAS  Google Scholar 

  • Schultz, F. M., Wylie, M. B., and Johnston, J. M. 1971. The relationship between the monoglyceride and glycerol-3-phosphate pathways in adipose tisse. Biochem. Biophys. Res. Commun. 45:246–250.

    PubMed  CAS  Google Scholar 

  • Scow, R. O., Stein, Y., and Stein, O., 1967. Incorporation of dietary lecithin and lysoleci-thin into lymph chylomicrons in the rat. J. Biol. Chem. 242:4919–4925.

    PubMed  CAS  Google Scholar 

  • Senior, J. R. 1964. Intestinal absorption of fats. J. Lipid Res. 5:495–521.

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Lapar, V., and Mosbach, E. H. 1972. HMG CoA reductase of intestinal mucosa and liver of the rat. J. Lipid Res. 13:402–412.

    PubMed  CAS  Google Scholar 

  • Shefer, S., Hauser, S., Lapar, V., and Mosbach, E. H. 1973. Regulatory effects of dietary sterols and bile acids on rat intestinal HMG CoA reductase. J. Lipid Res. 14:400–405.

    PubMed  CAS  Google Scholar 

  • Short, V. J., Dils, R., and Brindley, D. N. 1975. Enzymes of glycerolipid synthesis in small intestinal mucosa of foetal and neonatal guinea pigs. Biochem. J. 152:675–679.

    PubMed  CAS  Google Scholar 

  • Simmonds, W. J., Hofmann, A. F., and Theodor, E. J. 1967. Absorption of cholesterol from a micellar solution: Intestinal perfusion studies in man. J. Clin. Invest. 46:874–890.

    PubMed  CAS  Google Scholar 

  • Skipski, V. P., Morehouse, M. G., and Deuel, H. J. Jr. 1959. The absorption in the rat of a 1,3-dioleyl-2-deuteriostearyl glyceride-C14 and a 1-monodeuteriostearyl glyceride-C14. Arch. Biochem. Biophys. 81:93–104.

    PubMed  CAS  Google Scholar 

  • Small, D. S. 1968. A classification of biologic lipids based upon their interaction in aqueous systems. J. Am. Oil Chem. Soc. 45:108–119.

    PubMed  CAS  Google Scholar 

  • Smith, M. E., Sedgwick, B., Brindley, D. N., and Hübscher, G. 1967. The role of phosphati-date phosphohydrolase in glyceride biosynthesis. Eur. J. Biochem. 3:70–77.

    PubMed  CAS  Google Scholar 

  • Stein, Y., Tietz, A., and Shapiro, B. 1957. Glyceride synthesis of rat liver mitochondria. Biochim. Biophys. Acta 26:286–293.

    PubMed  CAS  Google Scholar 

  • Strauss, E. W. 1966. Electron microscopic study of intestinal fat absorption in vitro from mixed micelles containing linolenic acid, monoolein, and bile salt. J. Lipid Res. 7:307–323.

    PubMed  CAS  Google Scholar 

  • Subbaiah, P. V., Raghavan, S. S. and Ganguly, J. 1968. Further studies on the intestinal absorption of triglycerides and fatty acids in rats. Indian J. Biochem. 5:147–152.

    PubMed  CAS  Google Scholar 

  • Suzuki, R. 1968. Specific requirement of bile salts for absorption of cholesterol from the intestine. Keio J. Med. 17:169–187.

    PubMed  CAS  Google Scholar 

  • Swell, L., Trout, E. C. Jr., Hopper, J. R., Field, H. Jr., and Treadwell, C. R. 1958. Specific function of bile salts in cholesterol absorption. Proc. Soc. Exp. Biol. Med. 98:174–176.

    PubMed  CAS  Google Scholar 

  • Swell, L., Law, M. D., and Treadwell, C. R. 1965. Absorption of α- and β -octadecyl glyceryl ethers. Arch. Biochem. Biophys. 110:231–236.

    PubMed  CAS  Google Scholar 

  • Sylven, C., and Borgström, B. 1968. Absorption and lymphatic transport of cholesterol in the rat. J. Lipid Res. 9:596–601.

    PubMed  CAS  Google Scholar 

  • Tame, M. J., and Dils, R. 1967. Fatty acid synthesis in intestinal mucosa of guinea pig. Biochem. J. 105:709–716.

    PubMed  CAS  Google Scholar 

  • Tandon, R., Edwards, R. H., and Rodgers, J. B., 1972. Effects of bile diversion on the lipid re-esterifying capacity of the rat small bowel. Gastroenterology 63:990–1003.

    PubMed  CAS  Google Scholar 

  • Thompson, G. R., Ockner, R. K., and Isselbacher, K. J. 1969. Effect of mixed micellar lipid on the absorption of cholesterol and vitamin D3 into lymph. J. Clin. Invest. 48:87–95.

    PubMed  CAS  Google Scholar 

  • Treadwell, C. R., and Vahouny, G. V. 1968. Cholesterol absorption. Handbk. Physiol. 3:1407–1438.

    CAS  Google Scholar 

  • Vahouny, G. V., Weersing, S., and Treadwell, C. R. 1965. Function of specific bile acids in cholesterol esterase activity in vitro. Biochim. Biophys. Acta 98:607–616.

    PubMed  CAS  Google Scholar 

  • VerzÅr, F., and Laszt, L. 1934. Untersuchungen über die Resorption von Fettsäuren. Biochem. Z. 270:24–34.

    Google Scholar 

  • VerzÅr, F., and McDougall, E. J. 1936. Absorption from the Intestine. Longmans, Green, London, pp. 150–211.

    Google Scholar 

  • Vodavar, N., Massicard, N., and Flanzy, J. 1968. Formation et rôle des chylomicrons au cours de l’absorption des acides gras à chaîne longue. C. R. Acad. Sci. Paris 266:814–817.

    Google Scholar 

  • Volhard, F. 1900. Über Resorption and Fettspaltung im Magen. München Med. Wschr. 47:141–146.

    Google Scholar 

  • Watson, W. C., and Murray, E. 1966. Fat digestion and absorption in the adrenalectomized rat. J. Lipid Res. 7:236–241.

    PubMed  CAS  Google Scholar 

  • Webb, J. P. W., Hamilton, J. D., and Dawson, A. M. 1969. A physicochemical study of fat absorption in rats limitation of methods in vitro. Biochim. Biophys. Acta 187:42–52.

    PubMed  CAS  Google Scholar 

  • Weis, H. J., and Dietschy, J. M. 1969. Failure of bile acids to control hepatic cholesterogene-sis:evidence for endogenous cholesterol feedback. J. Clin. Invest. 48:2398–2408.

    PubMed  CAS  Google Scholar 

  • Weiss, S. B., and Kennedy, E. P. 1956. The enzymatic synthesis of triglycerides. J. Am. Chem. Soc. 78:3550.

    CAS  Google Scholar 

  • Westergaard, H., and Dietschy, J. M. 1974. Normal mechanisms of fat absorption and derangements induced by various gastrointestinal diseases. Med. Clin. North Am. 58:1413–1427.

    PubMed  CAS  Google Scholar 

  • Westergaard, H., and Dietschy, J. M. 1976. Delineation of the dimensions and permeability characteristics of two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J. Clin. Invest. 58:97–108.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Johnston, J.M. (1977). Gastrointestinal Tissue. In: Snyder, F. (eds) Lipid Metabolism in Mammals. Monographs in Lipid Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2832-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2832-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2834-6

  • Online ISBN: 978-1-4684-2832-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics