Skip to main content

Pathophysiology of Perinatal Hypoxic-ischemic Brain Damage

  • Chapter
Biology of Brain Dysfunction

Abstract

Impaired learning, cerebral palsy, and other forms of limited or abnormal neurological development blight the lives of an estimated 10% of children in Western society. Although the mechanisms for a substantial percentage of these abnormalities in development are at least partly explained by alreadyknown anatomical or chemical disorders, the causes for many of the cases remain elusive (Fig. 1). Among the known causes of mental and physical retardation, perinatal anoxic-ischemic injury ranks high, and we review here the present understanding and some of the known problems of this important cause of human disability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. H. Kirschbaum, J. C. DeHaven, N. Shapiro, and N. S. Assali, Oxyhemoglobin dissociation characteristic of human and sheep maternal and fetal blood, Am. J. Obstet. Gynecol. 96:741–757 (1966).

    Google Scholar 

  2. L. S. James, I. M. Weisbrot, C. E. Prince, D. A. Holaday, and V. Apgar, The acid-base status of human infants in relation to birth asphyxia and onset of respiration, J. Pediatr. 52:379–394 (1958).

    Article  Google Scholar 

  3. I. M. Weisbrot, L. S. James, C. E. Prince, D. A. Holaday, and V. Apgar, Acid-base homeostasis of the newborn infant during the first 24 hours of life, J. Pediatr. 52:395–406 (1958).

    Article  Google Scholar 

  4. F. F. Schachter and V. Apgar, Perinatal asphyxia and psychologic signs of brain damage in childhood, Pediatrics 24:1016–1025 (1959).

    Google Scholar 

  5. K. Adamsons and R. E. Myers, Perinatal asphyxia: causes, detection and neurologic sequelae, Pediatr. Clin. North Am. 20:465–480 (1973).

    Google Scholar 

  6. A. E. Seeds, Adverse effects on the fetus of acute events in labor, Pediatr. Clin. North Am. 17:811–834 (1970).

    Google Scholar 

  7. L. S. James, in “Resuscitation of the Newborn Infant” (H. Abramson, ed.) pp. 134–146, C. V. Mosby, St. Louis (1973).

    Google Scholar 

  8. L. H. Butterfield, Regionalization for respiratory care, Pediatr. Clin. North Am. 20:499–505 (1973).

    Google Scholar 

  9. W. A. Silverman, “Dunham’s Premature Infants,” P. E. Hoeber-Harper, New York (1961).

    Google Scholar 

  10. K. R. Niswander and M. Gordon, “The Women and Their Pregnancies,” W. B. Saunders, Philadelphia (1972).

    Google Scholar 

  11. D. Cavanagh and M. R. Talisman, “Prematurity and the Obstetrician,” Meredith, New York (1969).

    Google Scholar 

  12. S. H. Clifford, “AMA National Conference on Infant Mortality,” San Francisco (1966) pp. 39–43, AMA, Chicago (1967).

    Google Scholar 

  13. S. H. Clifford, High-risk pregnancy-prevention of prematurity the sine qua non for reduction in mental retardation and other neurologic disorders, N. Engl. J. Med. 271:243–249 (1964).

    Article  Google Scholar 

  14. R. A. Reis, “AMA National Conference on Infant Mortality,” San Francisco, Calif. (1966) pp. 1–4, AMA, Chicago (1967).

    Google Scholar 

  15. S. Shapiro, E. Schlesinger, and R. Nesbitt, “Infant, Perinatal, Maternal and Childhood Mortality in the United States,” Harvard University Press, Cambridge, Mass. (1968).

    Google Scholar 

  16. S. G. Babson and R. C. Benson, “Management of High-Risk Pregnancy and Intensive Care of the Neonate,” C. V. Mosby, St. Louis (1971).

    Google Scholar 

  17. A. Kjessler, Perinatal mortality, Acta Obstet. Gynecol. Scand. 34[Suppl. 1, 1–199] (1955).

    Article  Google Scholar 

  18. C. B. Courville, Birth and brain damage: traumatic versus anoxic damage in the fetal brain, Bull. Los Ang. Neurol. Soc. 28:209–222 (1963).

    Google Scholar 

  19. D. G. Clyne, Traumatic versus anoxic damage to the fetal brain, Dev. Med. Child Neurol. 6:455–457 (1964).

    Article  Google Scholar 

  20. C.M. Drillien, A longitudinal study of the growth and development of prematurely and maturely born children. Part VII: Mental development 2–5 years, Arch. Dis. Child. 36:233–240 (1961).

    Article  Google Scholar 

  21. L. C. Eaves, J. C. Nutall, H. Klonoff, and H. G. Dunn, Developmental and psychologic test scores in children of low birth weight, Pediatrics 45:9–19 (1970).

    Google Scholar 

  22. H. Knoblock, R. Ridner, P. Harper, and B. Pasaminick, Neuropsychiatric sequelae of prematurity: A longitudinal study, J. Am. Med. Assoc. 161:581–585 (1956).

    Article  Google Scholar 

  23. A. Rossier, The future of the premature infant, Dev. Med. Child Neurol. 4:483–487 (1962).

    Article  Google Scholar 

  24. M. Dunn, S. Z. Levine, and E. V. New, A long-term follow-up of small premature infants, Pediatrics 33:945–955 (1964).

    Google Scholar 

  25. L. O. Lubchenco, F. A. Homer, L. H. Reed, I. E. Nix, D. Metcalf, R. Cohig, H. C. Elliott, and M. Bourg, Sequelae of premature birth, Am. J. Dis. Child. 106:101–115 (1963).

    Google Scholar 

  26. A. D. McDonald, Cerebral palsy in children of very low birth weight, Arch. Dis. Child. 38:579–588 (1963).

    Article  Google Scholar 

  27. M. I. Griffiths and N. M. Barrett, Cerebral palsy in birmingham, Dev. Med. Child Neurol. 9:33–46 (1967).

    Article  Google Scholar 

  28. J. A. Churchill, The relationship of Little’s disease to premature birth, Am. J. Dis. Child. 96:32–39 (1958).

    Google Scholar 

  29. A. M. Lilienfeld and B. Pasamanick, The association of maternal and fetal factors with the development of cerebral palsy and epilepsy, Am. J. Obstet. Gynecol. 70:93–101 (1955).

    Google Scholar 

  30. B. Pasamanick and A. M. Lilienfeld, Association of maternal and fetal factors with development of mental deficiency, J. Am. Med. Assoc. 159:155–160 (1955).

    Article  Google Scholar 

  31. P. Plum, Aetiology of athetosis with special reference to neonatal asphyxia, idiopathic icterus and ABO-incompatibility, Arch. Dis. Child. 40:376–384 (1965).

    Article  Google Scholar 

  32. E. Christensen and J. Melchior, “Cerebral Palsy — A Clinical and Neuro pathological Study,” Clinics Develop. Med. #25, The Spastics Soc, London (1967).

    Google Scholar 

  33. R. A. Darke, Late effects of severe asphyxia neonatorum, J. Pediat. 24:148–158 (1944).

    Article  Google Scholar 

  34. C. Buck, R. Gregg, K. Stavraky, K. Subrahmanian, and J. Brown, The effect of single prenatal and natal complications upon the development of children of mature birthweight, Pediatrics 43:942–955 (1969).

    Google Scholar 

  35. G. L. Usdin and M. L. Weil, Effect of apnea neonatorum on intellectual development, Pediatrics 9:387–394 (1952).

    Google Scholar 

  36. H. B. W. Benaron, M. Brown, B. E. Tucker, V. Wentz, and G. K. Yacorzynski, The remote effects of prolonged labor with forceps delivery, precipitate labor with spontaneous delivery, and natural labor with spontaneous delivery of the child, Am. J. Obstet. Gynecol. 66:551–566 (1953).

    Google Scholar 

  37. H. M. Keith, M. A. Norval, and A. B. Hunt, Neurological lesions in relation to sequelae of birth injury, Neurology 3:139–147 (1953).

    Article  Google Scholar 

  38. H. M. Keith and R. P. Gage, Neurologic lesions in relation to asphyxia of the newborn and factors of pregnancy: Long term follow-up, Pediatrics 26:616–622 (1960).

    Google Scholar 

  39. J. S. Drage, C. Kennedy, and R. K. Schwartz, The Apgar score as an index of neonatal mortality. A report from the collaborative study of cerebral palsy, Obstet. Gynecol. 24:222–230 (1964).

    Google Scholar 

  40. J. S. Drage and H. Berendes, Apgar scores and outcome of the newborn, Pediatr. Clin. N. Am. 13:637–643 (1966).

    Google Scholar 

  41. K. R. Niswander, E. A. Friedman, D. B. Hoover, H. Pietrowski, and M. C. Westphal, Fetal morbidity following potentially anoxigenic obstetric conditions, Am. J. Obstet. Gynecol. 95:838–845 (1966).

    Google Scholar 

  42. A. Leviton and F. H. Gilles, Morphologic correlates of age at death of infants with perinatal telencephic leukoencephalopathy, Am. J. Pathol. 65:303–309 (1971).

    Google Scholar 

  43. A. Leviton and F. H. Gilles, Are hypertrophic astrocytes a sufficient criterion of perinatal telecephalic leukoencephalopathy?, J. Neurol. Neurosurg. Psychiatry 36:383–388 (1973).

    Article  Google Scholar 

  44. S. H. Clifford, The effects of asphyxia on the newborn infant, J. Pediatr. 18:567–578 (1941).

    Article  Google Scholar 

  45. A. R. Macgregor, The pathology of stillborn and neonatal death, Br. Med. Bull. 4:174–178 (1946).

    Google Scholar 

  46. O. Gröntoft, Intracranial hemorrhage and blood brain barrier problems in the newborn, Acta Pathol. Microbiol. Scand. 1954 [Suppl. C, 5-109].

    Google Scholar 

  47. J. J. Ross and R. M. Dimmettee, Subependymal cerebral hemorrhage in infancy, Am. J. Dis. Child. 110:531–542 (1965).

    Google Scholar 

  48. A. Towbin, Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn, Am. J. Pathol. 52:121–139 (1968).

    Google Scholar 

  49. W. S. Craig, Intracranial hemorrhage in the newborn, Arch. Dis. Child. 13:89–124 (1938).

    Article  Google Scholar 

  50. A. Towbin, Cerebral hypoxic damage in fetus and newborn, Arch. Neurol. 20:35–43 (1969).

    Article  Google Scholar 

  51. C. E. Benda, The late effects of cerebral birth injuries, Medicine (Baltimore) 24:71–109 (1945).

    Article  Google Scholar 

  52. N. Malamud, in “Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schade and W. H. McMenemy, eds.) pp. 211–225, F. A. Davis, Philadelphia (1963).

    Google Scholar 

  53. C. B. Courville, in “Birth and Brain Damage” (M. F. Courville, ed.) Pasadena (1971).

    Google Scholar 

  54. N. Malamoud, H. H. Itabashi, J. Caster, and H. B. Messinger, An etiologic and diagnostic study of cerebral palsy, J. Pediatr. 65:270–293 (1964).

    Article  Google Scholar 

  55. A. Towbin, Central nervous system damage in the human fetus and newborn infant, Am. J. Dis. Child. 119:529–542 (1970).

    Google Scholar 

  56. P. Schwartz, Birth injuries of the newborn, Arch. Pediatr. 73:429–450 (1956).

    Google Scholar 

  57. B. Q. Banker and J. C. Larroche, Periventricular leukomalacia of infancy, Arch. Neurol. 7:386–410 (1962).

    Article  Google Scholar 

  58. J. DeReuck, A. S. Chattha, and E. P. Richardson, Pathogenesis and evolution of periventricular leukomalacia in infancy, Arch. Neurol. 27:229–236 (1972).

    Article  Google Scholar 

  59. J. DeReuck, The human periventricular arterial blood supply and the anatomy of cerebral infarctions, Eur. Neurol. 5:321–334 (1971).

    Article  Google Scholar 

  60. L. Jilek, J. Fischer, L. Krulick, and S. Trojan, in “Developmental Neurobiology” (W. Himwich, ed.) pp. 331–369, Charles C Thomas, Springfield, Ill. (1970).

    Google Scholar 

  61. S. P. Hichs, M. C. Cavanaugh, and E. D. O’Brien, Effects of anoxia on the developing cerebral cortex in the rat, Am. J. Pathol. 40:615–628 (1962).

    Google Scholar 

  62. W. F. Windle, Brain damage at birth: Functional and structural modifications with time, J. Am. Med. Assoc. 206:1967–1972 (1968).

    Article  Google Scholar 

  63. J. B. Ranck and W. F. Windle, Brain damage in the monkey, Macaca Mulatta, by asphyxia neonatorum, Exp. Neurol. 1:130–154 (1959).

    Article  Google Scholar 

  64. M. D. Faro and W. F. Windle, Transneuronal degeneration in brains of monkeys asphyxiated at birth, Exp. Neurol. 24:38–53 (1969).

    Article  Google Scholar 

  65. H. N. Jacobson and W. F. Windle, Responses of foetal and newborn monkeys to asphyxia, J. Physiol. (Lond.) 153:447–456 (1960).

    Google Scholar 

  66. R. E. Myers, R. Beard, and K. Adamsons, Brain swelling in the newborn rhesus monkey following prolonged partial asphyxia, Neurology 19:1012–1018 (1969).

    Article  Google Scholar 

  67. M. E. Selzer, R. E. Myers, and S. B. Holstein, Prolonged partial asphyxia: Effects of fetal brain water and electrolytes, Neurology 22:732–737 (1972).

    Article  Google Scholar 

  68. R. E. Myers, Two patterns of perinatal brain damage and their conditions of occurrence, Am. J. Obstet. Gynecol. 112:246–276 (1972).

    Google Scholar 

  69. D. H. Padget, The development of the cranial arteries in the human embryo, Carneg. Inst. Washington, 82:207–215 (1948).

    Google Scholar 

  70. H. A. Kaplan and D. H. Ford, “The Brain Vascular System,” Elsevier New York (1966).

    Google Scholar 

  71. R. Vanden Bergh and H. Vanden Eichen, Anatomy and embryology of cerebral circulation, Prog. Brain Res. 30:1–25 (1968).

    Article  Google Scholar 

  72. D. H. Padget, The cranial venous system in man in reference to the development, adult configuration and relation to arteries, Am. J. Anat. 98:307–355 (1965).

    Article  Google Scholar 

  73. G. L. Streeter, The development of the venous sinuses of the dura matter in the human embryo, Am. J. Anat. 18:145–178 (1915).

    Article  Google Scholar 

  74. M. J. Purves, “The Physiology of the Cerebral Circulation,” Cambridge University Press, Cambridge, England (1972).

    Google Scholar 

  75. S. A. Hegedus and R. T. Shackelford, A comparative-anatomical study of the craniocervical venous system in mammals with special reference to the dog, Am. J. Anat. 116:375–386 (1965).

    Article  Google Scholar 

  76. L. S. James and K. Adamsons, Respiratory physiology of the fetus and newborn infant, N. Engl. J. Med. 271:1352–1360 (1964).

    Article  Google Scholar 

  77. G. Meschia, J. R. Cotter, C. S. Breathnach, and D. H. Barron, The hemoglobin, oxygen, carbon dioxide and hydrogen ion concentrations in the umbilical bloods of sheep and goats as sampled via indwelling plastic catheters, Q. J. Exp. Physiol. Cogn. Med. Sci. 50:185–195 (1965).

    Google Scholar 

  78. N. S. Assali, T. H. Kirschbaum, and P. V. Dilts, Effects of hyperbaric oxygen on uteroplacental and fetal circulation, Circ. Res. 22:573–588 (1968).

    Google Scholar 

  79. R. E. Behrman, M. H. Lees, E. N. Peterson, C. W. Delannoy, and A. E. Seeds, Fetal circulation in the primate in intrauterine distress, Am. J. Obstet. Gynecol. 108:956–969 (1970).

    Google Scholar 

  80. W. F. Windle, “Physiology of the Fetus,” Charles C Thomas, Springfield, Ill. (1971).

    Google Scholar 

  81. A. M. Rudolph and M. A. Heymann, The fetal circulation, Annu. Rev. Med. 19:195–206 (1958).

    Article  Google Scholar 

  82. A. M. Rudolph and M. A. Heymann, The circulation of the fetus in utero, Circ. Res. 21:163–184 (1967).

    Google Scholar 

  83. A. E. Barclay, J. Barcroft, D. H. Barron, and K. J. Franklin, A radiographie demonstration of the circulation through the heart in the adult and in the fetus and the identification of the ductus arteriosus, Br. J. Radiol. 12:505–517 (1939).

    Article  Google Scholar 

  84. S. Kaplan and N. S. Assali, in “Pathophysiology of Gestation III: Fetal and Neonatal Disorders” (N. S. Assali and C. R. Brinkman, eds.) pp. 1–77, Academic Press, New York (1972).

    Google Scholar 

  85. D. R. Dunnihoo and E. J. Quilligan, Carotid blood flow Distribution in the in utero sheep fetus, Am. J. Obstet. Gynecol. 116:648–656 (1973).

    Google Scholar 

  86. M. J. Purves and I. M. James, Observations on the control of cerebral blood flow in the sheep fetus and newborn lamb, Circ. Res. 25:651–667 (1969).

    Google Scholar 

  87. W. Lucas, T. Kirschbaum, and N. S. Assali, Cephalic circulation and oxygen consumption before and after birth, Am. J. Physiol. 210:287–292 (1966).

    Google Scholar 

  88. N. S. Assali, J. A. Mossirs, and R. Beck, Cardiovascular hemodynamics in the fetal lamb before and after lung expansion, Am. J. Physiol. 208:122–129 (1965).

    Google Scholar 

  89. R. E. Behrman and M. H. Lees, Organ blood flows of the fetal, newborn and adult rhesus monkey, Biol. Neonatorum 18:330–340 (1971).

    Article  Google Scholar 

  90. C. Kennedy, G. E. Grave, J. W. Jehle, and L. Sokoloff, Changes in blood flow in the component structures of the dog brain during postnatal maturation. J. Neurochem. 19:2423–2433 (1972).

    Article  Google Scholar 

  91. J. M. Garfunkel, H. W. Baird, and J. Ziegler, The relationship of oxygen consumption to cerebral functional activity, J. Pediatr. 44:64–72 (1954).

    Article  Google Scholar 

  92. C. Kennedy and L. Sokoloff, An adaptation of the nitrous oxide method to the study of the cerebral circulation in children, normal values for cerebral blood flow and cerebral metabolic rate, J. Clin. Invest. 36:1130–1137 (1957).

    Article  Google Scholar 

  93. L. I. Mann, Developmental aspects and the effect of carbon dioxide tension on fetal cephalic blood flow, Exp. Neurol. 26:136–147 (1970).

    Article  Google Scholar 

  94. B. K. Siesjö and F. Plum, in “Biology of Brain Dysfunction” (G. E. Gaull, ed.) Vol. 1, pp. 319–372, Plenum Press, New York (1973).

    Chapter  Google Scholar 

  95. M. McIlwain and H. S. Bachelard, “Biochemistry and the Central Nervous System,” Williams & Wilkins, Baltimore (1971).

    Google Scholar 

  96. N. D. Goldberg, J. V. Passonneau, and O. H. Lowry, Effects of changes in brain metabolism on the levels of citric acid intermediates, J. Biol. Chem. 241:3997–4003 (1966).

    Google Scholar 

  97. O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30 (1964).

    Google Scholar 

  98. H. S. Bachelard, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 4, pp. 1–11, Plenum Press, New York (1970).

    Google Scholar 

  99. A. Chesler and H. E. Himwich, Comparative studies of the rates of oxidation and glycolysis in the cerebral cortex and brain stem of the rat, Am. J. Physiol. 141:513–517 (1944).

    Google Scholar 

  100. A. Chesler and H. E. Himwich, Glycolysis in the parts of the central nervous system of cats and dogs during growth, Am. J. Physiol. 142:544–549 (1944).

    Google Scholar 

  101. T. E. Duffy, S. J. Kohle, and R. C. Vannucci, Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia, J. Neurochem. 24:271–276 (1975).

    Article  Google Scholar 

  102. D. F. Swaab and K. Boer, The presence of biologically labile compounds during ischemia and their relationship to the EEG in rat cerebral cortex and hypothalamus, J. Neurochem. 19:2843–2853 (1972).

    Article  Google Scholar 

  103. J. H. Thurston and D. B. McDougal, Effect of ischemia on metabolism of the brain of the newborn mouse, Am. J. Physiol. 216:348–352 (1969).

    Google Scholar 

  104. G. M. Lehrer, M. B. Bornstein, C. Weiss, and D. J. Silides, Enzymatic maturation of mouse cerebral neocortex in vitro and in situ, Exp. Neurol. 26:595–606 (1970).

    Article  Google Scholar 

  105. J. E. Wilson, The relationship between glycolytic and mitochondrial enzymes in the developing rat brain, J. Neurochem. 19:223–227 (1972).

    Article  Google Scholar 

  106. O. H. Lowry and J. V. Passonneau, The relationships between substrates and enzymes of glycolysis in brain, J. Biol. Chem. 239:31–41 (1964).

    Google Scholar 

  107. R. E. Kuhlman and O. H. Lowry, Quantitative histochemical changes during development of the rat cerebral cortex, J. Neurochem. 1:173–180 (1956).

    Article  Google Scholar 

  108. R. V. Coxon in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 37–52, Plenum Press, New York (1970).

    Google Scholar 

  109. O. H. Lowry, D. W. Schulz, and J. V. Passonneau, The kinetics of glycogen phosphorylases from brain and muscle, J. Biol. Chem. 242:271–280 (1967).

    Google Scholar 

  110. S. R. Nelson, D. W. Schulz, J. V. Passonneau, and O. H. Lowry, Control of glycogen levels in brain, J. Neurochem. 15:1271–1279 (1968).

    Article  Google Scholar 

  111. A. Chesler and H. E. Himwich, The glycogen content of various parts of the central nervous system of dogs and cats at different ages, Arch. Biochem. Biophys. 2:175–181 (1943).

    Google Scholar 

  112. W. Isselhard, J. H. Fischer, H. Kapune, and W. Stock, Metabolic patterns of several tissues of rabbits and guinea pigs during postnatal development, Biol. Neonatorum 22:201–222 (1973).

    Article  Google Scholar 

  113. T. E. Duffy and R. C. Vannucci, Perinatal brain metabolism: effects of anoxia and ischemia, Cerebral Vascular Diseases, Tenth Princeton Conference, Jan 9–11 (1974) (in press).

    Google Scholar 

  114. R. C. Vannucci and T. E. Duffy, The influences of birth on carbohydrate and energy metabolism in rat brain, Am. J. Physiol. 226: 933–940 (1974).

    Google Scholar 

  115. H. J. Shelley, Glycogen reserves and their changes at birth and in anoxia, Br. Med. J. 17:137–143 (1961).

    Google Scholar 

  116. K. Snell and D. G. Walker, Glucose metabolism in the newborn rat, Biochem. J. 132:739–752 (1973).

    Google Scholar 

  117. D. Yeung and I. T. Olvier, Induction of phosphopyruvate carboxylase in neonatal rat liver by adenosine 3′, 5′-cyclic monophosphate, Biochemistry 73:3231–3239 (1968).

    Article  Google Scholar 

  118. M. H. Cake, D. Yeung, and I. T. Oliver, The control of postnatal hypoglycemia, suggestions based on experimental observations in neonatal rats, Biol. Neonatorum 18:183–192 (1971).

    Article  Google Scholar 

  119. B. Shapiro and E. Wertheimer, Phosphorolysis and synthesis of glycogen in animal tissues, Biochem. J. 37:397–403 (1943).

    Google Scholar 

  120. N. Shimizu and M. Okada, Histochemical distribution of Phosphorylase in rodent brain from newborn to adults, J. Histochem. Cytochem. 5:459–471 (1957).

    Article  Google Scholar 

  121. W. Sacks, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 1, pp. 301–324, Plenun Press, New York (1969).

    Google Scholar 

  122. R. Balazs in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 1–36, Plenum Press, New York (1970).

    Google Scholar 

  123. J. J. O’Neill and T. E. Duffy, Alternate metabolic pathways in newborn brain, Life Sci. 5:1849–1857 (1966).

    Article  Google Scholar 

  124. C. B. Klee and L. Sokoloff, Changed in D (-)-β-hydroxybutyric acid-dehydrogenase activity during brain maturation in the rat, J. Biol. Chem. 242:3880–3883 (1967).

    Google Scholar 

  125. M. A. Page, H. A. Krebs, and D. H. Williamson, Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats, Biochem. J. 121:49–53 (1971).

    Google Scholar 

  126. O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill, Brain metabolism during fasting, J. Clin. Invest. 46:1589–1593 (1967).

    Article  Google Scholar 

  127. B. Persson, G. Settergren, and G. Dahlquist, Cerebral arteriovenous difference of acetoacetate and d-β-hydroxybutyrate in children, Acta Paediatr. Scand. 61:273–278 (1972).

    Article  Google Scholar 

  128. R. A. Hawkins, D. H. Williamson, and H. A. Krebs, Ketone-body utilization by adult and suckling rat brain in vivo, Biochem J. 122:13–18 (1971).

    Google Scholar 

  129. J. J. Spitzer and J. T. Weng, Removal and utilization of ketone bodies by the brain of newborn puppies, J. Neurochem. 19:2169–2173 (1972).

    Article  Google Scholar 

  130. L. I. Mann, Fetal brain metabolism and function, Clin. Obstet. Gynecol.13(3):638–651 (1970).

    Article  Google Scholar 

  131. M. M. Cohen and S. Lim, Acid soluble phosphates in the developing rabbit brain, J. Neurochem. 9:345–352 (1962).

    Article  Google Scholar 

  132. P. Mandel and S. Edel-Harth, Free nucleotides in the rat brain during post-natal development, J. Neurochem. 13:591–595 (1966).

    Article  Google Scholar 

  133. P. H. Mäenpää and N. C. R. Räihä, Effects of anoxia on energy-rich phosphates, glycogen, lactate and pyruvate in the brain, heart and liver of the developing rat, Ann. Med. Exp. Biol. Fenn. 16:306–317 (1968).

    Google Scholar 

  134. H. E. Himwich, Z. Baker, and J. F. Fazekas, The respiratory metabolism of infant brain, Am. J. Physiol. 125:601–606 (1939).

    Google Scholar 

  135. H. E. Himwich and J. F. Fazekas, Comparative studies of the metabolism of brain of infant and adult dog, Am. J. Physiol. 132:454–458 (1941).

    Google Scholar 

  136. D. B. Tyler and A. van Harreveld, The respiration of the developing brain, Am. J. Physiol. 136:600–603 (1942).

    Google Scholar 

  137. W. A. Himwich, H. B. W. Benaron, B. E. Tucker, C. Babuna, and M. Stripe, Metabolic studies on perinatal human brain, J. Appl. Physiol. 14:873–877 (1959).

    Google Scholar 

  138. K. F. Swaiman, J. M. Milstein, and M. M. Cohen, Interrelationships of glucose and glutamic acid metabolism in developing rabbit brain, J. Neurochem. 10:635–639 (1963).

    Article  Google Scholar 

  139. P. Greengard and H. McIlwain, in “Biochemistry of the Developing Nervous System” (H. Waelsch, ed.) pp. 251–260, Academic Press, New York (1955).

    Google Scholar 

  140. H. E. Himwich, “Brain Metabolism and Cerebral Disorders,” Williams & Wilkins, Baltimore (1951).

    Google Scholar 

  141. S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values, J. Clin. Invest. 27:476–483 (1948).

    Article  Google Scholar 

  142. R. L. Wechsler, R. D. Dripps, and S. S. Kety, Blood flow and oxygen consumption of the human brain during anesthesia produced by thiopental, Anesthesiology 12:308–312 (1951).

    Article  Google Scholar 

  143. I. Kjellmer, K. Karlaaon, T. Olsson, and K. G. Rosen, Cerebral reactions during intrauterine asphyxia in the sheep. I. Circulation and oxygen consumption in the fetal brain, Pediatr. Res. 8:50–57 (1974).

    Article  Google Scholar 

  144. N. S. Gregson and P. L. Williams, A comparative study of brain and liver mitochondria from newborn and adult rats. J. Neurochem. 16:617–626 (1969).

    Article  Google Scholar 

  145. D. R. Dahl and F. E. Samson, Metabolism of rat brain mitochondria during postnatal development, Am. J. Physiol. 196:470–472 (1959).

    Google Scholar 

  146. F. E. Samson, W. M. Balfour, and R. J. Jacobs, Mitochondrial changes in developing rat brain, Am. J. Physiol. 199:693–696 (1960).

    Google Scholar 

  147. M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain. II. Neonatal mitochondrial oxidations, Biochim. Biophys. Acta 74:51–59 (1963).

    Article  Google Scholar 

  148. J. M. Milstein, J. G. White, and K. F. Swaiman, Oxidative phosphorylation in mitochondria of developing rat brain, J. Neurochem. 15:411–415 (1968).

    Article  Google Scholar 

  149. D. Holtzman and C. L. Moore, Oxidative phosphorylation in immature rat brain mitochondria, Biol. Neonatorum 22:230–242 (1973).

    Article  Google Scholar 

  150. C. L. Moore and P. M. Strasberg, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 53–85, Plenum Press, New York (1970).

    Google Scholar 

  151. A. Davison and J. Dobbing, in “Applied Neurochemistry” (A. Davison and J. Dobbing, eds.) pp. 253–286, Blackwell, Oxford, England (1968).

    Google Scholar 

  152. A. Gjedde, J. Caronna, B. Hindfelt, and F. Plum, Whole brain blood flow and oxygen metabolism in the rat, Am. J. Physiol. (in press).

    Google Scholar 

  153. S. W. Britton and R. F. Kline, Age, sex, carbohydrate, adrenal cortex and other factors in anoxia, Am. J. Physiol. 145:190–202 (1945-1946).

    Google Scholar 

  154. G. S. Dawes, J. C. Mott, and H. J. Shelley, The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia, J. Physiol. (Lond.) 146:516–538(1959).

    Google Scholar 

  155. G. S. Dawes, H. N. Jacobson, J. C. Mott, and H. J. Shelley, Some observations on foetal and newborn rhesus monkeys, J. Physiol. (Lond.) 152:271–298 (1960).

    Google Scholar 

  156. A. Stafford and J. A. C. Weatherall, The survival of young rats in nitrogen, J. Physiol. (Lond.) 153:457–472 (1960).

    Google Scholar 

  157. R. C. Avery and J. M. Johlin, Relative suceptibility of adult and young mice to asphyxiation, Proc. Soc. Exp. Biol. Med. 29:1184–1186 (1932).

    Google Scholar 

  158. J. F. Fazekas, A. D. Alexander, and H. E. Himwich, Tolerance of the newborn to anoxia, Am. J. Physiol. 134:281–298 (1960).

    Google Scholar 

  159. H. G. Glass, F. F. Synder, and E. Webster, The rate of decline in resistance to anoxia of rabbits, dogs, and guinea pigs from the onset of viability to adult life, Am. J. Physiol. 140:609–615 (1941).

    Google Scholar 

  160. W. A. Selle and T. A. Witten, Survival of the respiratory (gasping) mechanism in young animals subjected to anoxia, Proc. Soc. Exp. Biol. Med. 47:495–497 (1941).

    Google Scholar 

  161. R. K. Thorns and W. A. Hiestand, Relation to survival time of respiratory gasping mechanism of the isolated mouse head to age, Proc. Soc. Exp. Biol. Med. 64:1–3 (1947).

    Google Scholar 

  162. E. V. Enzmann and G. Pincus, The extinction of reflexes in spinal mice of different ages as an indicator of the decline of anaerobiosis, J. Gen. Physiol. 18:163–169 (1934).

    Article  Google Scholar 

  163. H. Kabat, The greater resistance of very young animals to arrest of the brain circulation, Am. J. Physiol. 130:588–599 (1941).

    Google Scholar 

  164. L. I. Mann, Effects of hypoxia on umbilical circulation and fetal metabolism, Am. J. Physiol. 218:1453–1458 (1970).

    Google Scholar 

  165. J. J. Scibetta, H. E. Fox, L. Chik, and M. G. Rosen, On correlating the fetal heart and brain in the sheep, Am. J. Obstet. Gynecol. 115:946–952 (1973).

    Google Scholar 

  166. H. G. Swann, J. J. Christian, and C. Hamilton, The process of anoxic death in newborn puppies, Surg. Gynecol. Obstet. 99:5–8 (1954).

    Google Scholar 

  167. A. W. Brann, R. E. Myers, and R. DiGiacoma, The effects of halothane-induced maternal hypotension on the fetus, Med. Primat. Proc, Sec. Conf. Exp. Med. Surg. Primat., pp. 637-643, New York (1970).

    Google Scholar 

  168. G. S. Dawes, J. C. Mott, H. J. Shelley, and A. Stafford, The prolongation of survival time in asphyxiated immature foetal lambs, J. Physiol. (Lond.) 168:43–64 (1963).

    Google Scholar 

  169. J. Jilak and S. Trojan, Development of the resistance to general stagnant anoxia (ischemia) in dogs, Physiol. Bohemoslov. 15:62–66 (1966).

    Google Scholar 

  170. F. E. Samson and N. A. Dahl, Cerebral energy requirement of neonatal rats, Am. J. Physiol. 188:277–280 (1957).

    Google Scholar 

  171. C.A. Villee, D. D. Hagerman, N. Holmberg, J. Lind, and D. B. Villee, The effects of anoxia on the metabolism of human fetal tissues, Pediatrics 22:953–970 (1958).

    Google Scholar 

  172. M. Reivich, A. W. Brann, H. Shapiro, J. Rawson, and N. Sano, Reactivity of the cerebral vessels to CO2 in the newborn rhesus monkey, Panminerva. Med. 53:169 (1972).

    Google Scholar 

  173. J. Folbergrova, V. MacMillan, and B. K. Siesjo, The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain, J. Neurochem. 19:2507–2517 (1972).

    Article  Google Scholar 

  174. V. MacMillan and B. K. Siesjo, The effect of hypercapnia upon the energy metabolism of the brain during arterial hypoxemia, Scand. J. Clin. Lab. Invest. 30:237–244 (1972).

    Article  Google Scholar 

  175. K. Kogure, R. Busto, P. Scheinberg, and O. M. Reinmuth, Effects of moderate hypercapnia on cerebral energy metabolism, Neurology 23:409 (1973).

    Article  Google Scholar 

  176. B. J. Wilhjelm, Protective action of carbon dioxide against anoxia with and without anesthesia, Acta Pharmacol. Toxicol. 24:355–362 (1966).

    Article  Google Scholar 

  177. R. C. Vannucci and T. E. Duffy, Cerebral oxidative and energy metabolism of fetal and neonatal rats during anoxia and recovery. Am. J. Physiol. (in press).

    Google Scholar 

  178. A. E. Kaasik, L. Nilsson, and B. K. Siesjo, The effect of asphyxia upon the lactate, pyruvate and biocarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of physphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:433–447 (1970).

    Article  Google Scholar 

  179. R. S. Comline and M. Silver, The composition of foetal and maternal blood during parturition in the ewe, J. Physiol. (Lond.) 222:233–256 (1972).

    Google Scholar 

  180. H. E. Himwich, A. O. Bernstein, H. Herrlich, A. Chesler, and J. F. Fazekas, Mechanisms for the maintenance of life in the newborn during anoxia, Am. J. Physiol. 135:387–391 (1942).

    Google Scholar 

  181. J. C. Mott, The ability of young mammals to withstand total oxygen lack, Br. Med. Bull. 17:144–148 (1961).

    Google Scholar 

  182. C. I. Mayman and M. L. Tijerina, in “Brain Hypoxia” (J. B. Brierly and B. S. Meldrum, eds.) pp. 242–250, Lippincott, Philadelphia (1971).

    Google Scholar 

  183. “The Threshold and Mechanisms of Anoxic-Ischemic Brain Injury,” (Symposium) (F. Plum, ed.), Arch. Neurol. 29:359-419 (1973).

    Google Scholar 

  184. G. S. Dawes, E. Hibbard, and W. F. Windle, The effect of alkali and glucose infusion on permanent brain damage in rhesus monkeys asphyxiated at birth, J. Pediatr. 65:801–806 (1964).

    Article  Google Scholar 

  185. K. Adamsons, R. Behrman, G. S. Dawes, L. S. James, and C. Koford, Resuscitation by positive pressure ventilation and tris-hydroxymethylaminomethane of rhesus monkeys asphyxiated at birth, J. Pediatr. 65:807–881 (1964).

    Article  Google Scholar 

  186. R. E. Moore, Oxygen consumption and body temperature in newborn kittens subjected to hypoxia and reoxygenation, J. Physiol. (Lond.) 149:500–518 (1959).

    Google Scholar 

  187. C. M. Blatteis, Hypoxia and the metabolic response to cold in newborn rabbits, J. Physiol. (Lond.) 172:358–368 (1964).

    Google Scholar 

  188. R. Zakhary, J. A. Miller, Jr., and F. S. Miller, Hypothermia, asphyxia and brain carbohydrates in newborn puppies, Biol. Neonatorum 11:36–49 (1967).

    Article  Google Scholar 

  189. D. Richter, in “Biochemistry of Developing Nervous System” (H. Waelsch, ed.) pp. 225–250, Academic Press, New York (1955).

    Google Scholar 

  190. P. M. Heidger, F. S. Miller, and J. A. Miller, Cerebral and cardiac enzymatic activity and tolerance to asphyxia during maturation in the rabbit, J. Physiol. (Lond.) 206:25–40 (1970).

    Google Scholar 

  191. D. B. McDougal, Jr., J. Holowach, M. C. Howe, E. M. Jones, and C. A. Thomas, The effects of anoxia upon energy sources and selected metabolic intermediates in the brains of fish, frog and turtle, J. Neurochem. 15:577–588 (1968).

    Article  Google Scholar 

  192. A. G. M. Campbell, J. E. Milligan, and N. S. Talner, The effect of pretreatment with pentobarbital, meperidine, or hyperbaric oxygen on the response to anoxia and resuscitation in newborn rabbits, J. Pediatr. 72:518–527 (1968).

    Article  Google Scholar 

  193. F. Cockburn, S. S. Daniel, G. S. Dawes, L. S. James, R. E. Myers, W. Niemann, H. Rodriquez de Curet, and B. B. Ross, The effect of pentobarbital anesthesia on resuscitation and brain damage in fetal rhesus monkeys asphyxiated on delivery, J. Pediatr. 75:281–291 (1969).

    Article  Google Scholar 

  194. R. C. Goodlin and D. Lloyd, Use of drugs to protect against fetal asphyxia, Am. J. Obstet. Gynecol. 107:227–231 (1970).

    Google Scholar 

  195. I. Arnfred and O. Secher, Anoxia and barbiturates: Tolerance to anoxia in mice influenced by barbiturates, Arch. Int. Pharmacodyn. Ther. 89:67–74 (1962).

    Google Scholar 

  196. B. J. Wilhjelm and E. Jacobsen, The protective action of different barbituric acid derivatives against anoxia in mice, Acta Pharmacol. Toxicol. 28:203–208 (1970).

    Article  Google Scholar 

  197. P. D. Gatfield, O. H. Lowry, D. W. Schulz, and J. V. Passonneau, Regional energy reserves in mouse brain and changes with ischaemia and anesthesia, J. Neurochem. 13:185–195 (1966).

    Article  Google Scholar 

  198. E. A. Brunner, J. V. Passonneau, and C. Motstad, The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain, J. Neurochem. 18:2301–2316 (1971).

    Article  Google Scholar 

  199. W. E. Stone, The effects of anaesthetics and of convulsants on the lactic acid content of the brain, Biochem. J. 32:1908–1918 (1938).

    Google Scholar 

  200. C. I. Mayman, P. D. Gatfield, and B. McL. Breckenridge, The glucose content of brain in anaesthesia, J. Neurochem. 11:483–487 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Vannucci, R.C., Plum, F. (1975). Pathophysiology of Perinatal Hypoxic-ischemic Brain Damage. In: Gaull, G.E. (eds) Biology of Brain Dysfunction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2673-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2673-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2675-5

  • Online ISBN: 978-1-4684-2673-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics