Skip to main content

Optimal State Estimation and its Application to Inertial Navigation System Control

  • Chapter
Optimal Estimation in Approximation Theory

Part of the book series: The IBM Research Symposia Series ((IRSS))

  • 243 Accesses

Abstract

The behaviour of most functions in practical situations can always — at least approximately — be described by a finite-dimensional system of differential equations. The theory of optimal state estimation deals with the minimum error-variance reconstruction of the functions from a limited information in a noisy environment. The solution approach, algorithm and stability properties for the linear Gaussian estimation problem are reviewed. A general and typical way for the design of a suboptimal estimation algorithm with special regard to system properties and realization requirements is shown for the technical problem of the error estimation of an aided inertial navigation system. According to the closedloop system requirement of high accuracy in a noisy environment the considerations about the estimator design are extended to the design of simple, (sub-) optimal controllers. A comparison to the optimal estimation accuracy shows the efficiency of proposed output feedback controller design procedure in this technical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature

  1. COURANT, R., HILBERT, D.: “Methods of Mathematical Physics”, Vol. I, I I. Interscience Publishers, New York, 1962.

    Google Scholar 

  2. KWAKERNAAK, H. SIVAN, R.: “Linear Optimal Control Systems”. Wiley-Interscience, New York, 1972.

    Google Scholar 

  3. ANDERSON, B.D.O., MOORE, J.B.: “Linear Optimal Control”. Prentice-Hall, Englewood Cliffs, 1971.

    Google Scholar 

  4. JAZWINSKI, A.H.: “Stochastic Processes and Filtering Theory”. Academic Press, New York, 1970.

    Google Scholar 

  5. PAPOULIS, A.: “Probability, Random Variables, and Stochastic Processes”. McGraw Hill, New York, 1965.

    Google Scholar 

  6. GELB, A., e.a.: “Applied Optimal Estimation”. The M.I.T. Press, Cambridge, 1974.

    Google Scholar 

  7. GELB, A., e.a.: “Theory and Applications of Kalman Filtering”. AGARDograph 139, 1970.

    Google Scholar 

  8. ATHANS, M.: “The Matrix Minimum Principle”. J. on Information and Control, vol. 11, p. 592–606, 1968.

    Article  Google Scholar 

  9. HOFMANN, W., KORTOM, W.: “Reduced-Order State Estimators with Application in Rotational Dynamics”. “Gyrodynamics”, Springer-Verlag, Berlin, 1974.

    Google Scholar 

  10. BROCKETT, R.W.: “Finite Dimensional Linear Systems”. John Wiley & Sons, New York, 1970.

    Google Scholar 

  11. BROCKETT, R.W.: “A Short Course on Kalman Filtering and Application”. The Analytic Science Corporation, Reading Mass.

    Google Scholar 

  12. KUCERA, V.: “A Contribution to Matrix Quadratic Equations”. IEEE Trans, on Automatic Control, vol. AC- 17 (June 1972), pp. 344–347.

    Article  Google Scholar 

  13. VAUGHAN, D.R.: “A Negative Exponential Solution for the Matrix Riccati Equation”, IEEE Trans. Automatic Control, vol. A014, (Feb. 1969), pp. 72–75.

    Article  Google Scholar 

  14. MULLER, P.C.: “Special Problems of Gyro dynamics”. International Centre of Mechanical Sciences, Courses and Lectures No. 63, Springer-Ver-lag, Udine, 1970.

    Google Scholar 

  15. HOFMANN, W.: “Die Anwendung der Kalman-Bucy-Filtertheorie beim Entwurf von Riickkopplungsnetzwerken fur Dopplergestiitzte Tragheitsnavigationssysteme im Flug”. DFVLR-IB Nr. 552–75/18.

    Google Scholar 

  16. BRYSON, A.E., HO, Y.: “Applied Optimal Control”. Ginn and Company, London, 1969.

    Google Scholar 

  17. HOFMANN, W.: “Application of Inners to the Design of Optimal State Estimators Under Stability Constraints”. Proceedings of the Conference on Information Sciences and Systems, Baltimore, 1976.

    Google Scholar 

  18. HOFMANN, W.: “Optimal Stochastic Disturbance Compensation by Output Vector Feedback”, to appear as DLR-Forschungsbericht.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hofmann, W. (1977). Optimal State Estimation and its Application to Inertial Navigation System Control. In: Micchelli, C.A., Rivlin, T.J. (eds) Optimal Estimation in Approximation Theory. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2388-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2388-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2390-7

  • Online ISBN: 978-1-4684-2388-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics