Skip to main content

Electronic Signal Processing for Raman Scattering Measurements

  • Chapter
Laser Raman Gas Diagnostics

Abstract

General signal processing techniques for laboratory Raman spectroscopy and Remote Raman spectroscopy using cw and pulsed lasers are discussed. Chopped and pulsed source/time gated detection techniques are outlined. Detectors such as photomultiplier and image tubes, SEC Vidicon sensors, image dissectors, and multiplex spectrometers are discussed and some of their relative merits evaluated. Computer aided data reduction and techniques for fluorescence suppression in the signal and in the display are covered.

A brief comparison of signal processing systems for Remote Raman, Micro-Raman (spectra of single particles one micron in diameter) and other high background instrumental configurations are examined. Suitable references are detailed for further study of each of these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SSR Model 1120 Amplifier-Discriminator and 1105 Data Converter Manual, Solid State Radiations, Los Angeles, Calif. 1969, pp 2–1 through 2–10.

    Google Scholar 

  2. Ibid.

    Google Scholar 

  3. Simon Larach, “Photoelectronic Materials and Devices,” (D. Van Nostrand Company, Inc., New Jersey, 1965).

    Google Scholar 

  4. RCA Photomultiplier Manual PT-61, RCA Electronic Components, Harrison, New Jersey 07029 (1970).

    Google Scholar 

  5. John Harding, Block Engineering, Inc., personal communication.

    Google Scholar 

  6. Robert J. Leser and Jack A. Salzman, “Light-Detection Electronics For a Raman Lidar,” NASA TN D-6879 (1972).

    Google Scholar 

  7. Tomas Hirschfeld, et al, “Remote Spectroscopic Analysis of ppm-Level Air Pollutants by Raman Spectroscopy,” Appl. Phys. Lett. 22, 38 (1973).

    Article  ADS  Google Scholar 

  8. Michel Bridoux and Michel Delhaye, “Spectrometrie Raman-Laser Ultra-Rapide,” Nouv. Rev. d’Optique Appliquée 1, 23 (1970).

    Article  ADS  Google Scholar 

  9. W. H. Smith and J. J. Barrett, “The Use of The Transmission Windows of the Fabry-Perot Interferometer in the Detection of Raman Scattered Radiation for Atmospheric Gases,” AIAA Paper, 71–1078.

    Google Scholar 

  10. Tomas Hirschfeld, “Raman Spectroscopy of Samples in the One Cubic Micron Range,” Int. Conf. Raman Spectry., Ottawa, (August, 1969).

    Google Scholar 

  11. Tomas Hirschfeld, “Raman Microprobe: Vibrational Spectroscopy in the Femtogram Range,” Opt. Soc. Am. Spring Meeting, Denver (March, 1973).

    Google Scholar 

  12. G. W. Goetze, et al, “SEC Camera Tubes,” Reprinted from the publication, Advances in Electronics and Electron Physics, Volume 22, Photo-Electronic Image Devices, Third Symposium, (Academic Press, London). Available from Westinghouse Inc., Elmira, New York.

    Google Scholar 

  13. Op. Cit., Hirschfeld, Ref. 11.

    Google Scholar 

  14. John Cooney, “Can LIDAR Detect CAT?” Part 2, Applied Optics 11, 2374 (1972).

    Article  ADS  Google Scholar 

  15. Tomas Hirschfeld, “Elimination of Fluorescence in Raman Spectroscopy,” Ann. Mtg., Opt. Soc. Am. (1973).

    Google Scholar 

  16. J.-P. E. Taran, ONERA, personal communication. (See also the presentation of J.-P. E. Taran in this Proceedings.)

    Google Scholar 

Supplementary References Multiplex Spectroscopy:

  1. J. F. James and R. S. Sternberg, “The Design of Optical Spectrometers,” (Chapman and Hall Ltd., London, 1969).

    Google Scholar 

  2. Robert John Bell, “Introductory Fourier Transform Spectroscopy,” (Academic Press, New York, 1972).

    Google Scholar 

  3. Manuel Cardona, “Modulation Spectroscopy,” (Academic Press, New York, 1969).

    Google Scholar 

Noise Analysis:

  1. R. H. Brown and R. Q. Twiss, “Interferonstry of The Intensity Fluctuations in Light,” Proc. Royal Society, London 242A, 300 (1957).

    Article  ADS  Google Scholar 

  2. R. H. Brown and R. Q. Twiss, “Interferonstry of The Intensity Fluctuations in Light,” Proc. Royal Society, London 243A, 291 (1958).

    Article  ADS  Google Scholar 

  3. William H. Louisell, “Radiation and Noise in Quantum Electronics,” (McGraw-Hill, New York, 1964).

    Google Scholar 

  4. C. D. Motchenbacher and F. C. Fitchen, “Low-Noise Electronic Design,” (John Wiley & Sons, New York, 1973).

    Google Scholar 

  5. RCA Electro Optics Handbook, SCN 102–67, RCA Defense Electronic Products, Aerospace Systems Division, Burlington, Mass. (1968).

    Google Scholar 

  6. Athanasios Papoulis, “The Fourier Integral and Its Applications,” (McGraw-Hill, New York, 1962).

    MATH  Google Scholar 

Detectors-Imaging and Non-Imaging:

  1. B. Kazan and M. Knoll, “Electronic Image Storage,” (Academic Press, New York, 1968).

    Google Scholar 

  2. Daniel R. Frankl, “Electrical Properties of Semiconductor Surfaces,” (Pergamon Press, New York, 1967).

    Google Scholar 

  3. R. G. Neuhauser and L. D. Miller, “Beam Landing Errors and Signal Output Uniformity of Vidicons,” Jour. of SMPTE 67, (March 1968).

    Google Scholar 

  4. F. L. Skaggs, et al, “A Broadband Image Pick-Up Tube with High Near-Infrared Sensitivity,” 1969 Electro-Optical Systems Design Conference.

    Google Scholar 

  5. Walter G. Jung, “Camera System Design Considerations Involved in Application of The Silicon Target Vidicon,” Available from MTI Division, KMS Industries, Inc., Cockeysville, Md. 21030.

    Google Scholar 

  6. T. Kohler, et al, “The Silicon Diode Array Camera Tube for Near Infrared TV Applications,” 1969 Electro-Optical Systems Design Conference.

    Google Scholar 

  7. A. H. Sommer, “Photoemissive Materials,” (John Wiley & Sons, Inc., New York, 1968).

    Google Scholar 

Examples of Spectroscopic Signal Processing Tricks:

  1. H. D. Pruett, “Photon Counting System for Rapidly Scanning Low-Level Optical Spectra,” Applied Optics 11, 2529 (1972).

    Article  ADS  Google Scholar 

  2. Erwin G. Loewen, “Diffraction Grating Handbook,” Bausch & Lomb, Inc., (1970).

    Google Scholar 

  3. Potts, Speed Suppression Programmed Scanning, Dow Chemical Co., ASTM publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schildkraut, E.R. (1974). Electronic Signal Processing for Raman Scattering Measurements. In: Lapp, M., Penney, C.M. (eds) Laser Raman Gas Diagnostics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2103-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2103-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2105-7

  • Online ISBN: 978-1-4684-2103-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics