Skip to main content

Matrices and Linear Algebra

  • Chapter
Handbook of Applied Mathematics

Abstract

A matrix A = [a ij ] m n is a rectangular array consisting of m rows and n columns of elements:

$$A=\left[ \begin{matrix} {{a}_{11}}{{a}_{12}}\cdot \cdot \cdot {{a}_{1n}} \\ {{a}_{21}}{{a}_{22}}\cdot \cdot \cdot {{a}_{2n}} \\ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ {{a}_{m1}}{{a}_{m2}}\cdot \cdot \cdot {{a}_{mn}} \\\end{matrix}\right]$$

Here a ij is the element in the i th row and the j th column. Unless otherwise stated, we will take the elements as being complex numbers, although they could be elements of any field or even of a more general structure. As a special case a ij can be real for all i and j; A is then called a real matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aitken, A. C., Determinants and Matrices, Oliver and Boyd, Edinburgh, 1954.

    Google Scholar 

  2. Barnett, S., and Storey, C., Matrix Methods in Stability Theory, Barnes-Noble, New York, 1971.

    Google Scholar 

  3. Bellman, R., Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.

    Google Scholar 

  4. Fadeev, D. K., and Fadeeva, V. N., Computational Methods of Linear Algebra, W. H. Freeman, San Francisco, 1963.

    Google Scholar 

  5. Gantmacher, F. R., The Theory of Matrices, vols. I and II, Chelsea, New York, 1959.

    Google Scholar 

  6. Householder, A. S., The Theory of Matrices in Numerical Analysis, Blaisdell Publishing Co., New York, 1965.

    Google Scholar 

  7. MacDuffee, C. C., The Theory of Matrices, Chelsea, New York, 1946.

    Google Scholar 

  8. Marcus, M., and Minc, H., Survey of Matrix Theory and Matrix Inequalities, Prindle, Weber, and Schmidt, Ltd., Boston, 1969.

    Google Scholar 

  9. Todd, J., Survey of Numerical Analysis, McGraw-Hill, New York, 1962.

    Google Scholar 

  10. Varga, R. S., Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1962.

    Google Scholar 

  11. Wedderburn, J. H. M., Lectures on Matrices, American Math. Society, New York, 1954.

    Google Scholar 

  12. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

    Google Scholar 

  13. Hestenes, M. R., “Inversion of Matrices by Biorthogonalization and Related Results,” J. SIAM, 6, 51–90, 1958. (Section 16.3.4.)

    Google Scholar 

  14. Fan, K., and Hoffman, A. J., Lower Bounds for the Rank and Location of the Eigenvalues of a Matrix, National Bureau of Standards, Applied Mathematics Series 39, 117–130, 1954. (Section 16.4.2.)

    Google Scholar 

  15. Bauer, F. L., “Optimally Scaled Matrices,” Numer. Math., 5, 73–87, 1963. (Section 16.5.7.)

    Article  Google Scholar 

  16. Schwerdtfeger, H., “Direct Proof of Lanczos Decomposition Theory,” Amer. Math. Monthly, 67, 855–860, 1960. (Section 16.6.7.)

    Article  Google Scholar 

  17. Lax, P. D., and Wendroff, B., “Difference Schemes for Hyperbolic Equations with High Order of Accuracy,” Comm. Pure and Appl. Math., 17, 381–398, 1964. (Section 16.8.4.)

    Article  Google Scholar 

  18. Sinkhorn, R., “A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices,” Ann. Math. Statistics, 35, 876–879, 1964. (Section 16.10.1.)

    Article  Google Scholar 

  19. Brauer, A., “The Theorems of Ledermann and Ostrowski on Positive Matrices,” Duke Mathematics Journal, 24, 265–274, 1957. (Section 16.10.1.)

    Article  Google Scholar 

  20. Cohn, A., “Ueber die Anzahl der Wurzeln einer Algebraischen Gleichung in einem Kreise,” Mathematical Algorithms, 14, 110–148, 1922. (Section 16.10.4.)

    Google Scholar 

  21. Ralston, A., “A Symmetric Matrix Formulation of the Hurwitz-Routh Stability Criterion,” IRE Trans. Auto, Control, 7, 50–51, 1962. (Section 16.10.4.)

    Article  Google Scholar 

  22. Wilf, H. S., “A Stability Criterion for Numerical Integration,” J. Assoc. Comp. Mach., 6, 363–365, 1959. (Section 16.10.4.)

    Article  Google Scholar 

  23. Jury, E. I., and Bharucha, B. H., “Notes on the Stability Criterion for Linear Discrete Systems,” IRE Trans. Auto. Control, AC-6, 88–90, 1961. (Section 16.10.4.)

    Google Scholar 

  24. Penrose, R., “A Generalized Inverse for Matrices,” Proc. Cam b. Philo. Soc., 51, 406–413, 1961. (Section 16.11.1.)

    Article  Google Scholar 

  25. Greville, T. N. E., “Note on the Generalized Inverse of a Matrix Product,” SIAM Review, 8, 518–521, 1966. (Section 16.11.1.)

    Article  Google Scholar 

  26. Drazin, M. A.; Dungey, J. W.; and Gruenberg, K. W., “Some Theorems on Commuting Matrices,” J. London Math. Soc., 26, 221–228, 1951. (Section 16.12.2.)

    Article  Google Scholar 

  27. Afriat, S. N., “Composite Matrices,” Quart. J. Math., Second Series, 5, 81–98, 1954. (Section 16.12.3.)

    Article  Google Scholar 

  28. Brenner, J. L., “Expanded Matrices from Matrices with Complex Elements,” SIAM Review, 3, 165–166, 1961. (Section 16.12.3.)

    Article  Google Scholar 

  29. Gott., E., “A Theorem on Determinants,” SIAM Review, 2, 288–291, 1960. (Section 16.12.3.)

    Article  Google Scholar 

  30. Harary, F., “A Graph Theoretical Approach to Matrix Inversion by Partitioning,”Numer. Math., 7, 255–259, 1959. (Section 16.14.2.)

    Google Scholar 

  31. Hu, T. C., “Revised Matrix Algorithms for Shortest Paths,” SIAM J. Appl. Math., 15, 207–218, 1967. (Section 16.14.2.)

    Article  Google Scholar 

  32. Steward, D. V., “Partitioning and Tearing Systems of Equations,” J. SIAM Numer. Anal., Series B, 2, 345–365, 1965. (Section 16.14.2.)

    Google Scholar 

  33. Dulmage, A. L., and Mendelsohn, N. S., “Two Algorithms for Bipartite Graphs,” J. SIAM, 11, 183–194, 1963. (Section 16.14.3.)

    Google Scholar 

  34. Dulmage, A. L., and Mendelsohn, N. S., “On the Inverse of Sparse Matrices,” Math. Comp., 16, 494–496, 1962. (Section 16.14.3.)

    Article  Google Scholar 

  35. Hall, M., “An Algorithm for Distinct Representatives,” Amer. Math. Monthly, 7717, 1956. (Section 16.14.3.)

    Google Scholar 

  36. Ford, L. R., and Fulkerson, D. R., “A Simple Algorithm for Finding Maximal Network Flows and an Application to Hitchcock Problems,” Canad. J. Math., 9, 210–218, 1957. (Section 16.14.3.)

    Article  Google Scholar 

  37. Tewarson, R. P., “Row Column Permutation of Sparse Matrices,” The Computer Journal, 10, 300–305, 1967. (Section 16.14.3.)

    Article  Google Scholar 

  38. Tewarson, R. P., “Computations with Sparse Matrices,” SIAM Review, 12, 527–543, 1970. (Section 16.14.3.)

    Article  Google Scholar 

  39. Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W., UNPACK User’s Guide, Soc. Indust. Appl. Math., Phila., 1979.

    Google Scholar 

  40. Smith, B. T., Boyle, J. M. Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, V. C., and Moler, C. B., Matrix Eigensystem Routines, EISPACK Guide, Springer-Verlag, Berlin, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Van Nostrand Reinhold

About this chapter

Cite this chapter

Chow, TS. (1990). Matrices and Linear Algebra. In: Pearson, C.E. (eds) Handbook of Applied Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1423-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1423-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-00521-4

  • Online ISBN: 978-1-4684-1423-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics