Skip to main content

The Optical Properties of Narrow-Gap Low Dimensional Structures

  • Chapter
Condensed Systems of Low Dimensionality

Part of the book series: NATO ASI Series ((NSSB,volume 253))

  • 317 Accesses

Abstract

The paper reviews recent developments in the optical properties of narrow-gap semiconductors. The extension of optoelectronics to wavelengths beyond 1.5 μm has required the development of novel device concepts and, unlike the situation with GaAs based systems, new materials technologies. A case in question is the interest in replacing mercury cadmium telluride alloys for devices operating in the region of 10 μm wavelength, because of the severe structural and stability problems. The following examples are given of differing approaches currently being investigated.

Mismatch epitaxy is now widely employed either to modify the band structure by fabricating strained layer superlattices or to integrate grossly mismatched materials such as InSb with GaAs or GaAs with silicon. In the latter case the strain is relaxed by generation of large concentrations of misfit dislocations. Nevertheless it is shown that the carrier mobility need not be strongly degraded even close to the interface between the mismatched materials.

Strained layer superlattices based on the alloy system In(As, Sb) have been used to generate band edge photoluminescence at wavelengths beyond 10 μm. Examples are given of structural problems encountered with these III–V alloys. Remarkable photoluminescence results have also been obtained with single monolayers of InAs inserted into GaAs where intense sub band gap emission is observed with samples grown by flow-modulation MOCVD.

Other novel narrow-gap systems which are currently being investigated include alpha-tin and its alloys with germanium where the alpha phase is stabilized by built-in strain, and alloys of InSb and InAs with bismuth.

Alternative approaches to midinfrared photonics include i) the use of doping superlattices (n-i-p-i structures) to modify the band gap and to produce highly nonlinear optical effects, ii) the exploitation of intersubband absorption in quantum well structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Optical Properties of Narrow-gap Low Dimensional Semiconductors”, NATO ASI Series B Physics, Vol 152, J.C. Portal, J.C. Maan, R.A. Stradling and C.M. Sotomayor Torres, ed., Plenum, New York (1986)

    Google Scholar 

  2. S.R. Kurtz, G.C. Osbourn, R.M. Biefeld and S.R. Lee, Appl. Phys. Lett., 53: 216 (1988)

    Article  Google Scholar 

  3. T.Y. Seong, A.G. Norman, G.R. Booker, R. Droopad, S.D. Parker, R.L. Williams and R.A. Stradling, Materials Research Society Symposium Proceedings (1989)

    Google Scholar 

  4. “Optical Properties of Narrow-gap Low Dimensional Semiconductors”, NATO ASI Series B Physics, Vol 152, J.C. Portal, J.C. Maan, R.A. Stradling and C.M. Sotomayor Torres, ed., Plenum, New York (1986)

    Google Scholar 

  5. R.J. Nicholas, R.A. Stradling and J.C. Ramage, J. Phys. C, 12: 1641 (1979)

    Article  Google Scholar 

  6. A.J. Noreika, W.J. Takei, M.H. Francombe and C.E.C. Wood, J. Appl. Phys., 53: 4932 (1982)

    Article  Google Scholar 

  7. K.Y. Ma, Z.M. Fang, D.J. Jaw, R.M. Cohen, G.B. Stringfellow, W.P. Kosar and D.W. Brown, Appl. Phys. Lett., 55: 2420 (1989)

    Article  Google Scholar 

  8. G. Hasnain, B.F. Levine, D.L. Sivco & A.Y. Cho, Appl. Phys. Lett., 56: 770 (1990)

    Article  Google Scholar 

  9. G. Tuttle, H. Kroemer and J.H. English, J. Appl. Phys., 65: 5239 (1989); J. Appl. Phys., (1990)

    Article  Google Scholar 

  10. T.S. Rao, C. Halpin, J.B. Webb, J.P. Noad and J. McCaffrey, J. Appl. Phys., 65: 585 (1989); J.B. Webb, M. Paiment and T.S. Rao, Solid State Commun., 71:871 (1989)

    Article  Google Scholar 

  11. L.C Kimmerling and J.R. Patel, VLSI Electronics, 12: 223 (1985)

    Google Scholar 

  12. H. Kroemer, T.Y. Liu and P.M. Petroff, J. Cryst. Growth, 95: 96 (1989)

    Article  Google Scholar 

  13. G. Griffiths, K. Mohammed, S. Subbana, H. Kroemer and J.L. Merz, Appl. Phys. Lett., 43: 1059 (1983)

    Article  Google Scholar 

  14. S.N. Holmes, R.A. Stradling, P.D. Wang, R. Droopad, S.D. Parker and R.L. Williams, Semicond. Sci. & Tech., 4: 303 (1989)

    Article  Google Scholar 

  15. S.N. Holmes, C.C. Phillips, R.A. Stradling, Z. Wasilewski, R. Droopad, S.D. Parker, W.T. Yuen, P. Balk, A. Brauers, H. Heinecke, C Plass, M. Weyers, C.T. Foxon, B.A. Joyce, G.W. Smith and C.R. Whitehouse, Semicon. Sci. & Tech., 4: 782 (1989)

    Article  Google Scholar 

  16. “Optical Properties of Narrow-gap Low Dimensional Semiconductors”, NATO ASI Series B Physics, Vol 152, J.C. Portal, J.C. Maan, R.A. Stradling and C.M. Sotomayor Torres, eds., Plenum, New York (1986)

    Google Scholar 

  17. J.M. Gerard and J.Y. Marzin, Appl. Phys. Lett., 53: 568 (1988)

    Article  Google Scholar 

  18. M. Sato & Y. Horikoshi, J. Appl. Phys., 66: 851 (1989)

    Article  Google Scholar 

  19. G.C. Osbourn, J. Vac. Sci. & Tech. B, 2: 176 (1984)

    Article  Google Scholar 

  20. J.R. Dawson, J. Cryst. Growth, 98: 220 (1989)

    Article  Google Scholar 

  21. S. Groves and W. Paul, Phys. Rev. Lett., 11: 194 (1963)

    Article  Google Scholar 

  22. B.L. Booth and A.W. Ewald, Phys. Rev., 186: 770 (1969)

    Article  Google Scholar 

  23. S. Groves, Physics of Semimetals & Narrow-gap Semiconductors, D.L. Carter and R.T. Bate, eds., Pergamon (1971) p.447

    Google Scholar 

  24. R.F.C. Farrow, D.S. Robertson, G.M. Williams, A.G. Cullis, G.R. Jones, I.M. Young and P.N.J. Dennis, J. Cryst. Growth, 54: 507 (1981)

    Article  Google Scholar 

  25. S. Takatani and Y.W. Chung, Phys. Rev.B, 31: 2290 (1985)

    Article  Google Scholar 

  26. B.I. Craig & B.J. Carrison, Phys. Rev., 33: 8130 (1986)

    Article  Google Scholar 

  27. Li-Wei Tu, G.K. Wong and J.B. Ketterson, Appl. Phys. Lett., 55: 1327 (1989)

    Article  Google Scholar 

  28. W.T. Yuen, W.K. Liu, B.A. Joyce and R.A. Stradling, Semicond. Sci. & Tech., 5: 373 (1990)

    Article  Google Scholar 

  29. W.T. Yuen, W.K. Liu, S.N. Holmes and R.A. Stradling, Semicond. Sci. & Tech., 4: 819 (1989)

    Article  Google Scholar 

  30. L. Liu, Physics Lett. A, 45: 285 (1973); Solid State Comm., 16:285 (1975)

    Article  Google Scholar 

  31. E.A. Fitzgerald, P.E. Freeland, M.T. Asom, W. Lowe, R. MacHarrie, A.R. Kortan, Y.H. Xie, F.A. Thiel, A.M. Sargent, L. Cooper, G.A. Thomas, K.A. Jackson, B.E. Weir, G.P. Schwartz, G.J. Gualtieri and L.C. Kimmerling, Abstracts 119th TMS Annual Meeting, p 31 (1990)

    Google Scholar 

  32. M.T. Asom, E.A. Fitzgerald, A.R. Kortan, B. Spear and L.C. Kimmerling, Appl. Phys. Lett., 55: 578 (1989)

    Article  Google Scholar 

  33. P.R. Pukite, A. Harwit and S.S. Iyer, Appl. Phys. Lett., 54: 2142 (1989)

    Article  Google Scholar 

  34. A. Zrenner, F. Koch and K. Ploog, Surface Science, 196: 671 (1988)

    Article  Google Scholar 

  35. A. Zrenner, F. Koch, R.L. Williams, R.A. Stradling, K. Ploog and G. Weimann, Semicond. Sci. & Tech., 3: 1203 (1988)

    Article  Google Scholar 

  36. K. Ploog, M. Hauser and A. Fischer, Appl. Phys. A, 45: 233 (1988)

    Article  Google Scholar 

  37. T. Ishikawa, K. Ogasawara, T. Nakamura & K. Kondo, J. Appl. Phys., 61: 1937 (1987)

    Article  Google Scholar 

  38. E.F. Schubert, J.E. Cunningham, W.T. Tsang and G.L. Timp, Appl. Phys. Lett., 51: 1170 (1987)

    Article  Google Scholar 

  39. R.L. Williams, E. Skuras, R.A. Stradling, R. Droopad, S.N. Holmes and S.D. Parker, Semicond. Sci. & Tech., 5: S338 (1990)

    Article  Google Scholar 

  40. G.H. Dohler, Phys. Stat. Solidi B, 52: 79 (1972)

    Article  Google Scholar 

  41. K. Ploog and G.H. Dohler, Adv. Phys., 32: 285 (1983)

    Article  Google Scholar 

  42. B. Ullrich, C. Zhang and K. von Klitzing, Appl. Phys. Lett., 54: 1133 (1989)

    Article  Google Scholar 

  43. E.F. Schubert, T.D. Harris, J.E. Cunningham and W. Jan, Phys. Rev. B, 39: 11011 (1989)

    Article  Google Scholar 

  44. E.F. Schubert, J.E. Cunningham and W.T. Tsang, Appl. Phys. Lett., 51: 817 (1987); E.F. Schubert to be published.

    Article  Google Scholar 

  45. C.C. Phillips, C. Hodge, R. Thomas, S.D. Parker, R.L. Williams and R. Droopad, Semicond. Sci. & Tech., 5: S319 (1990)

    Article  Google Scholar 

  46. C.C. Phillips, Appl. Phys. Lett., 56: 151 (1990)

    Article  Google Scholar 

  47. J. Maserjian, F.J. Grunthaner and C.T. Elliott, Infrared Physics, 30: 27 (1990)

    Article  Google Scholar 

  48. B.F. Levine, C.G. Bethea, G. Hasnain, J. Walker and R.J. Malik, Appl. Phys. Lett., 53: 296 (1988)

    Article  Google Scholar 

  49. M.A. Kinch and A. Yariv, Appl. Phys. Lett., 55: 2093 (1989)

    Article  Google Scholar 

  50. C.T. Elliott, A. Davis and A.M. White, Semicond. Sci. & Tech., 5 (1990)

    Google Scholar 

  51. K.W. Goossen, S.A. Lyon and K. Alavi, Appl. Phys. Lett., 53: 1027 (1988)

    Article  Google Scholar 

  52. D.R.P. Guy, N. Apsley, L.L. Taylor, S.J. Bass and P.C. Klipstein, in: “Quantum Well and Superlattice Physics”, G.H. Dohler and J.N. Schulman, eds., SPIE (1987)

    Google Scholar 

  53. J.Y. Andersson and G. Landgren, J. Appl. Phys., 64: 4123 (1988)

    Article  Google Scholar 

  54. F. Muller, V. Petrova-Koch, M. Zachau, F. Koch, D. Grutzmacher, R. Meyer, H. Jurgensen and P. Balk, Semicond. Sci. & Tech., 3: 797 (1988)

    Article  Google Scholar 

  55. M.J. Kane, L.L. Taylor, N. Apsley and S.J. Bass, Semicond. Sci. & Tech., 3: 586 (1988)

    Article  Google Scholar 

  56. F.H. Julien, J.M. Lourtioz, N. Herschkorn, D. Delacourt, J.P. Pocholle, M. Papuchon, R. Planel and G. Le Roux, Appl. Phys. Lett., 53: 116 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Stradling, R.A. (1991). The Optical Properties of Narrow-Gap Low Dimensional Structures. In: Beeby, J.L., Bhattacharya, P.K., Gravelle, P.C., Koch, F., Lockwood, D.J. (eds) Condensed Systems of Low Dimensionality. NATO ASI Series, vol 253. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1348-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1348-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1350-2

  • Online ISBN: 978-1-4684-1348-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics