Skip to main content

Muscle O2 Gradients from Hemoglobin to Cytochrome: New Concepts, New Complexities

  • Chapter
Oxygen Transport to Tissue-V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 169))

Abstract

The purpose of this paper is to reappraise the sequential barriers to O2 transport from red cells to mitochondria in light of a more accurate model of intracapillary O2 transport, and measurements of myoglobin (Mb) saturation in subcellular volumes. We find that transcapillary gradients are larger and tissue gradients smaller than predicted by existing models of O2 diffusion. During exercise the principal “resistance” to O2 transport resides in the capillary and extracellular space; the limiting variables are rate of O2 release and red cell transit time. Mb plays a major role in overcoming “resistance” at the capillary by buffering Po2 well below capillary Po2 (Pcapo2). These findings are incompatible with classical concepts of O2 delivery to red muscle. Alternatives to Kroghian tinking are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buchtal, F., and Schmalbuch, H., 1980, Motor unit of mammalian muscle, Physiol. Rev., 60: 90.

    Google Scholar 

  • Chance, B., Oshino, N., Sugano, T., and Mayevsky, A., 1973, Basic principles of tissue oxygen determination from mitochondrial signals, Adv. Exp. Med. Biol., 37a: 277.

    Google Scholar 

  • Clark, A., and Clark, P., The capture of chemical reations in tissue by freezing, Math. Biosci., in preparation.

    Google Scholar 

  • Cole, R.P., 1982, Myoglobin function in exercising skeletal muscle, Science, 216: 523.

    Article  PubMed  CAS  Google Scholar 

  • Federspiel, W.J., Clark, A. Jr., and Cokelet, G.R., 1982, Oxygen delivery: the view from the red cell, Microvasc. Res., 23: 251.

    Google Scholar 

  • Federspiel, W.J., and Sarelius, I.H., Role of red cell spacing on the intracapillary transport of oxygen, Microvasc. Res., in preparation.

    Google Scholar 

  • Fletcher, J.E., 1980, On facilitated oxygen diffusion in muscle tissues, Biophys. J., 29: 437.

    Article  PubMed  CAS  Google Scholar 

  • Gayeski, T., 1981, A cryogenic microspectrophotometric method for measuring myoglobin saturation in subcellular volumes; Application to resting dog gracilis muscle. Ph.D. Dissertation, University of Rochester, Rochester, N.Y.

    Google Scholar 

  • Gayeski, T.E.J., and Honig, C.R., 1978, Myoglobin saturation and calculated Po2 in single cells of resting gracilis muscles, Adv. Exp. Med. Biol., 94: 77.

    Article  Google Scholar 

  • Gayeski, T.E.J., and Honig, C.R., 1982, Direct measurement of intracellular O2 gradients: role of convection and myoglobin, Adv. Exp. Med. Physiol., in press.

    Google Scholar 

  • Grunewald, W.A., and Sowa, W., 1977, Capillary structures and O2 supply to tissue, Rev. Physiol. Biochem. Pharmacol., 77: 149.

    Article  PubMed  CAS  Google Scholar 

  • Heliums, J.D., 1977, The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue, Microvasc. Res., 13: 131.

    Article  Google Scholar 

  • Honig, CR., 1981, “Modern Cardiovascular Physiology”, Little Brown Co., Boston, pp. 223–227.

    Google Scholar 

  • Honig, CR., and Odoroff, CL., 1981, Calculated dispersion of capillary transit times: significance for oxygen exchange, Am. J. Physiol., 240: H199.

    PubMed  CAS  Google Scholar 

  • Honig, CR., Odoroff, CL., and Frierson, J.L., 1982, Active and passive capillary control in a red muscle at rest and in exercise, Am. J. Physiol., 243: H196.

    PubMed  CAS  Google Scholar 

  • Huxley, V.H., and Kutchai, H., 1981, The effect of the red cell membrane and a diffusion boundary layer on the rate of oxygen uptake by human erythrocytes, J. Physiol., 316: 75.

    PubMed  CAS  Google Scholar 

  • Klitzman, B., and Duling, B.R., 1979, Microvascular hematocrit and red cell flow in resting and contracting striated muscle, Am. J. Physiol., 237: H481.

    PubMed  CAS  Google Scholar 

  • Kreuzer, F., and Yahr, W.Z., 1960, Influence of red cell membrane on diffusion of oxygen, J. Appl. Physiol., 15: 1117.

    PubMed  CAS  Google Scholar 

  • Kutchai, H., 1970, Numerical study of oxygen uptake by layers of hemoglobin solution, Respir. Physiol., 10: 273.

    Article  PubMed  CAS  Google Scholar 

  • Moll, W., 1969, The influence of hemoglobin diffusion on oxygen uptake and release by red cells, Respir. Physiol., 6: 1.

    Article  Google Scholar 

  • Popel, A.S., and Gross, J.F., 1979, Analysis of oxygen diffusion from arteriolar networks, Am. J. Physiol., 237: H681–H689.

    PubMed  CAS  Google Scholar 

  • Rose, C.P., and Goresky, CA., 1982, Barrier-limited transport of oxygen in the coronary circulation, Fed. Proc, 41: 1252.

    Google Scholar 

  • Sarelius, I.H., and Duling, B.R., Direct measurement of microvascular hematocrit, red cell flux and transit time, Am. J. Physiol., in press.

    Google Scholar 

  • Sheth, B.V., and Heliums, J.D., 1980, Transient oxygen transport in hemoglobin layers under conditions of the microcirculation, Ann. B iomed. Eng., 8: 183.

    Article  CAS  Google Scholar 

  • Sinha, A.K., 1969, Oxygen uptake and release by red cells through capillary wall and plasma layer (thesis), Univ. of California, San Francisco, CA.

    Google Scholar 

  • Tamura, M., Oshino, N., Chance, B., and Silver, I.A., 1978, Optical measurements of intracellular oxygen concentration of rat heart in vitro, Arch. Biochem. Biophys., 191: 8.

    Article  PubMed  CAS  Google Scholar 

  • Thews, G., 1959, Untersuchung der Sauerstoffaufnahme und-abgäbe sehr dünner Blutlamellen, Pflügers Arch. Ges. Physiol., 268: 308.

    Article  CAS  Google Scholar 

  • Villadsen, J., and Sorensen, J.P., 1969, Solution of parabolic partial differential equations by a double collection method, Chem. Eng. Sci., 24: 1337.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Honig, C.R., Gayeski, T.E.J., Federspiel, W., Clark, A., Clark, P. (1984). Muscle O2 Gradients from Hemoglobin to Cytochrome: New Concepts, New Complexities. In: Lübbers, D.W., Acker, H., Leniger-Follert, E., Goldstrick, T.K. (eds) Oxygen Transport to Tissue-V. Advances in Experimental Medicine and Biology, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1188-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1188-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1190-4

  • Online ISBN: 978-1-4684-1188-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics