Skip to main content

The Function of Drosophila in Genetic Toxicology Testing

  • Chapter
Chemical Mutagens

Part of the book series: Chemical Mutagens

Abstract

Chemical compounds in an ever-increasing variety and kind are constantly being introduced into the human environment. Some of these may affect the genetic material. Such effects, when produced in germ cells, lead to an increase of the genetic load of our descendants, while in somatic cells they may result in the development of malignancies. Recent findings suggest a striking overlap between the mutagenic and carcinogenic potential of chemicals that a distinction between the two tends to become an artificial one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. De Serres, The correlation between carcinogenic and mutagenic activity in short-term tests for mutation induction and DNA repair, Mutat. Res. 31, 203 (1975).

    PubMed  Google Scholar 

  2. B. Bridges, The three-tier approach to mutagenicity screening and the concept of radiation-equivalent dose, Mutat. Res. 26, 335 (1974).

    CAS  PubMed  Google Scholar 

  3. S. Abrahamson, and E. B. Lewis, The detection of mutations in Drosophila melanogaster, in: “Chemical mutagens. Principals and Methods for Their Detection” (A. Hollaender ed.), p. 461, Plenum Press, New York (1971).

    Google Scholar 

  4. H. J. Muller and I. I. Oster, Some mutational techniques in Drosophila, in: “Methodology in Basic Genetics” (W. J. Burdette, ed.) p. 249, Holden-Day Inc., San Francisco (1963).

    Google Scholar 

  5. W. R. Lee, Chemical mutagenesis, in: “The Genetics and Biology of Drosophila” (M. Ashburner and E. Novitski, eds.). Academic Press, New York (1975).

    Google Scholar 

  6. F. H. Sobels, The role ofDrosophila in the field of mutation research. Arch. Genet. 45, 101 (1972).

    CAS  Google Scholar 

  7. F. H. Sobels, The advantages ofDrosophila for mutation studies, Mutat. Res. 26, 111 (1974).

    Google Scholar 

  8. F. E. Würgler, F. H. Sobels, and E. Vogel, Drosophila tests, Mutat. Res., 1975, in press.

    Google Scholar 

  9. J. E. Casida, Insect microsomes and insecticide chemical oxidations, in: “Microsomes and Drug Oxidations,” p. 517Academic Press, New York (1969).

    Google Scholar 

  10. E. Hodgson, and F. W. Plapp, Biochemical characteristics of insect microsomes, J. Agr. Food Chem. 18, 1048 (1970).

    CAS  Google Scholar 

  11. C. F. Wilkinson, and L. B. Brattsten, (1972), Microsomal drug metabolizing enzymes in insects, Drug Metab. Reviews 1 (2), 153.

    CAS  Google Scholar 

  12. H. S. Mason, J. C. North, and M. Vanneste, (1965), Microsomal mixed-function oxidations: the metabolism of xenobiotics, Fedn. Proc. 24, 1172.

    CAS  Google Scholar 

  13. L. G. Hansen, and E. Hodgson, (1971), Biochemical characteristics of insect microsomes, N- and O-demethylation, Biochem. Pharm. 20, 1569.

    CAS  PubMed  Google Scholar 

  14. J. H. Dewaide, (1971), Metabolism of Xenobiotics. Comparative and kinetic studies as a basis for environmental pharmacology. Thesis, University Nijmegen.

    Google Scholar 

  15. H. S. Mason, Mechanisms of oxygen metabolism, in: “Advances in Enzymology” (Nord, F. F. ed.) pp. 19, 79, Interscience Publishers Inc., New York (1957).

    Google Scholar 

  16. D. V. Parke, “The Biochemistry of Foreign Compounds,” p. 261, Pergamon Press, Oxford (1968).

    Google Scholar 

  17. L. Shuster, Metabolism of drugs and toxic substances, Ann. Rev. Biochem. 33, 571 (1964).

    CAS  PubMed  Google Scholar 

  18. R. T. Williams, “Detoxication Mechanisms,” Wiley, New York (1959).

    Google Scholar 

  19. M. Tsukamoto, Metabolic fate of DDT in Drosophila melanogaster. I. Identification of a non-DDE metabolite, Botyu-Kagaku 24, 141 (1959).

    CAS  Google Scholar 

  20. M. Tsukamoto, Metabolic fate of DDT in Drosophila melanogaster. II. DDT resistance and Kelthane production, Botyu-Kagaku 25, 156 (1960).

    Google Scholar 

  21. M. Tsukamoto, Metabolic fate of DDT in Drosophila melanogaster. III. Comparative studies, Botyu-Kagaku 26, 74 (1961).

    Google Scholar 

  22. A. W. A. Brown, Genetics of insecticide resistance in insect vectors, in: “Genetics of Insect Vection of Disease” (J. W. Wright and R. Pal eds.), p. 505, Elsevier, Amsterdam (1967).

    Google Scholar 

  23. F. J. Oppenoorth, Biochemical genetics of insecticide resistance, Ann. Rev. Entomol. 10, 185 (1965).

    CAS  Google Scholar 

  24. P. N. Magee and J. M. Barnes, The production of malignant primary liver tumours in the rat by feeding dimethylnitrosamine, Brit. J. Cancer 10, 114 (1956).

    CAS  PubMed  Google Scholar 

  25. E. C. Miller and J. A. Miller, The mutagenicity of chemical carcinogens: Correlations, problems, and interpretations, in:“Chemical mutagens, Principles and Methods for Their Detection” (A. Hollaender, ed.), p. 83, Plenum Press, New York (1971).

    Google Scholar 

  26. J. A. Miller, Carcinogenesis by chemicals: An overview. G.H.A. Crowes Memorial Lecture, Cancer Res. 38, 559 (1971).

    Google Scholar 

  27. R. Preussmann, Zum Wirkungsmechanismus karzinogener Aryldialkyltriazene, Fortschr. Krebsforsch., p. 163 (1969).

    Google Scholar 

  28. H. Druckrey, R. Preussmann, S. Ivankovic, D. Schmähl, I. Afkham, G. Blum, H. D. Mennel, M. Müller, P. Petropoulos, and H. Schneider, Organotrope carcinogene Wirkungen bei 65 verschiedenen N-Nitroso-Verbindungen an BD-Ratten, Z. Krebsforsch. 69, 103 (1967).

    CAS  Google Scholar 

  29. P. N. Magee and R. Schoental, Carcinogenesis by nitroso compounds, Brit. Med J. 20, 102 (1964).

    CAS  Google Scholar 

  30. R. Preussmann, H. Druckrey, S. Ivankovic, and A. von Hodenberg, Chemical structure and carcinogenicity of aliphatic hydrazo, azo, and azoxy compounds and of triazenes, potentialin vivo alkylating agents, Ann. N.Y. Acad. Sci. 163, 797 (1969).

    Google Scholar 

  31. R. Preussmann, A. von Hodenberg, and H. Hengy, Mechanism of carcinogenesis with l-aryl-3,3-dialkyltriazenes. Enzymatic dealkylation by rat liver microsomal fraction in vitro, Biochem. Pharmacol. 18, 1 (1969).

    CAS  Google Scholar 

  32. H. Druckrey, Chemische Struktur und Reaktionsmechanismen krebserzeugender Substanzen, Umsch. Wiss. Tech. p. 94 (1972).

    Google Scholar 

  33. P. D. Lawley and C. J. Thatcher, Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N-nitro-N-nitrosoguanidine, Biochem. J. 116, 696 (1970).

    Google Scholar 

  34. I. A. Rapoport, The alkylation of the gene molecule, Dokl. Akad. Nauk SSSR 59, 1183 (1948).

    CAS  Google Scholar 

  35. C. Auerbach and B.J. Kilbey, Mutation in eukaryotes, Ann. Rev. Genet. 5, 163 (1971).

    CAS  PubMed  Google Scholar 

  36. W. Lijinsky and A. E. Ross, Alkylation of rat liver nucleic acids not related to carcinogenesis by N-nitrosamines, J. Nat. Cancer Inst. 42, 1095 (1969).

    CAS  PubMed  Google Scholar 

  37. G. F. Kolar and R. Preussmann, Validity of a linear Hammet plot for the stability of some carcinogenic l-aryl-3,3-dimethyltriazenes in an aqueous system, Z. Naturorsch 26b, 950(1971).

    Google Scholar 

  38. F. W. Krüger, R. Preussmann, and N. Niepelt, Mechanism of carcinogenesis with 1-aryl-3, 3-dialkyl-triazenes. III. In vitro methylation of RNA and DNA with 1-phenyl-3,3(14C)-dimethyltriazene, Biochem. Pharmakol. 20, 529 (1971).

    Google Scholar 

  39. G. F. Kolar, Biologically active derivatives of 1,3-triazene, in “Advances in Antimicrobial and Antineoplastic Chemotherapy,” Proc. of the VIIth Int. Congr. Of Chemotherapy, (M. Hejzlar, M. Semonsky and S. Masak, eds.), Prague, Urban und Schwarzenberg, München, 1972 p. 121 (1971).

    Google Scholar 

  40. W. Kreis, S. B. Peipho, and H. V. Bernhard, Studies on the metabolic fate of the 14-C-labeled methyl group of a methyl hydrazine derivative in P815 mouse leukemia, Experienta 22, 431 (1966).

    CAS  Google Scholar 

  41. W. Kreis, J. H. Burchenal, and D. J. Hutchinson, Influence of a methylhydrazine derivative on thein vivo transmethylation of the S-methyl group of methionine onto purine and pyrimidine bases of RNA, Proc. Am. Assoc. Cancer Res. 9, 38, (1968).

    Google Scholar 

  42. H. J. Teas, and J. G. Dyson, Mutations in Drosophila by methylazoxymethanol, the aglycone of cycasin, Proc. Soc. Exp. Biol. Med. 125, 988 (1967).

    CAS  PubMed  Google Scholar 

  43. N. Brock, Pharmakologische Untersuchungen mit Trofosfamid (Ixoten®), einem neuen Oxazaphosphorinoxid, Med. Monatsschr. 27, 390 (1973).

    CAS  PubMed  Google Scholar 

  44. N. Brock, R. Gross, H. J. Hohorst, H. O. Klein, and B. Schneider, Activation of cyclophosphamide in man and animals, Cancer 27, 1512 (1971).

    CAS  PubMed  Google Scholar 

  45. N. Brock, and H. J. Hohorst, Über die Aktivierung von Cyclophosphamidin vivo und in vitro, Arzneimittel-Forsch. 13, 1021 (1963).

    CAS  Google Scholar 

  46. N. Brock, and H. J. Hohorst, (1967), Metabolism of cyclophosphamide, Cancer 20, 900.

    CAS  PubMed  Google Scholar 

  47. N. Brock, H. Hoefer-Janker, H. J. Hohorst, W. Scheef, B. Schneider, and H. C. Wolf, (1973), Die Aktivierung von Ifosfamid an Mensch und Tier, Arzeim.-Forsch. 23, 1.

    CAS  Google Scholar 

  48. N. E. Sladek, Therapeutic efficacy of cyclophosphamide as a function of its metabolism, Cancer Res. 535 (1972).

    Google Scholar 

  49. T. A. Connors, P. J. Cox, P. B. Farmer, A. B. Foster, and M. Jarman, Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and ifosfamide, Pharmacol. 23, 115 (1974).

    CAS  Google Scholar 

  50. D. L. Hill, W. R. Laster, Jr., and R. F. Struck, Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer 658 (1972).

    Google Scholar 

  51. R. A. Alacron and J. Meienhofer, Formation of the cytotoxic aldehyde acrolein duringin vitro degradation of cyclophosphamide. Nature New Biol. 233, 250 (1971).

    Google Scholar 

  52. M. Colvin, C. A. Padgett, and C. Fenselau, A biologically active metabolite of cyclophosphamide. Cancer Res. 33, 915 (1973).

    CAS  PubMed  Google Scholar 

  53. I. A. Rapoport, Mutations under the influence of unsaturated aldehydes, Dokl. Akad. NaukSSSR 61, 713 (1948).

    CAS  Google Scholar 

  54. D. L. Hill, W. R. Laster, Jr., M. C. Kirk, S. El Dareer, and R. F. Struck, Metabolism of ifosfamide and production of a toxic ifosfamide metabolite. Cancer Res. 33, 1016 (1973).

    CAS  PubMed  Google Scholar 

  55. R. C. Garner, E. C. Miller, J. V. Garner, and R. S. Hanson, Formation of a factor lethal forS. typhimurium TA 1530 and TA 1531 on incubation of aflatoxin Bi with rat liver microsomes, Biochem. Biophys. Res. Commun. 45, 774 (1971).

    CAS  PubMed  Google Scholar 

  56. R. C. Garner, E. C. Miller, and J. A. Miller, Microsomal metabolism of aflatoxin Bi to a reactive derivative toxic toSalmonella typhimurium TA 1530, Cancer Res. 32, 2058 (1972).

    CAS  PubMed  Google Scholar 

  57. B. N. Ames, W. E. Durston, E. Yamasaki, and F. D. Lee, Carcinogens are mutagens: A simple test combining liver homogenates for activation and bacteria for detection, Proc. Nat. Acad. Sci. U.S.A. 70, 2281 (1973).

    CAS  Google Scholar 

  58. W. H. Butler, M. Greenblatt, and W. Lijinsky, Carcinogenesis by aflatoxins Bi, Gi, and Ba, Cancer Res. 29, 2206 (1969).

    CAS  PubMed  Google Scholar 

  59. G. N. Wogan, G. S. Edwards, and P. M. Newberne, Structure-activity relationships in toxicity and carcinogenicity of aflatoxins and analogs. Cancer Res. 31, 1936 (1971).

    CAS  PubMed  Google Scholar 

  60. T. Ong, Mutagenicity of aflatoxins in Neurospora crassa, Mutat, Res. 9, 615 (1970).

    CAS  Google Scholar 

  61. Tong-man Ong, and F. J. De Serres, Mutagenicity of chemical carcinogens in Neurospora crassa, Cancer Res. 32, 1890 (1972).

    Google Scholar 

  62. R. C. Garner, Microsome-dependent binding of aflatoxin Bi to DNA, RNA, polyribonucleotides and proteinsin vitro, Chem.-Biol. Interactions 6, 125 (1973).

    CAS  Google Scholar 

  63. H. L. Gurtoo, Binding of aflatoxins (Bi, B2, Gi, G2, and Bza) and metabolites to hepatic microsomes. Pharmacologist 15, 176 (1973).

    Google Scholar 

  64. H. L. Gurtoo and T. C. Campbell, Metabolism of aflatoxin Bi and metabolism-dependent and independent binding of aflatoxin Bi to rat hepatic microsomes, Mol. Pharmacol. 5, 635 (1973).

    CAS  Google Scholar 

  65. H. L. Gurtoo and C. V. Dave, In vitro metabolic conversion of aflatoxins and benzo(a)pyrene to nucleic acid-binding metabolites, Cancer Res. 35, 382 (1975).

    CAS  PubMed  Google Scholar 

  66. C. C. J. Culvenor, A. T. Dann, and A. T. Dick, Alkylation as the mechanism by which the hepatotoxic pyrrolizidine alkaloids act on cell nuclei. Nature 195, 570 (1962).

    CAS  PubMed  Google Scholar 

  67. C. C. J. Culvenor, D. T. Downing, J. A. Edgar, and M. V. Jago, Pyrrolizidine alkaloids as alkylating and antimitotic agents, Ann. N.Y. Acad. Sci. 163, 837 (1969).

    CAS  Google Scholar 

  68. A. R. Mattocks, Toxicity of pyrrolizidine alkaloids. Nature 217, 723 (1968).

    CAS  PubMed  Google Scholar 

  69. L. B. Bull, C. C. J. Culvenor, and A. T. Dick, “The Pyrrolizidine Alkaloids,” North Holland Publishing Co., Amsterdam (1968).

    Google Scholar 

  70. R. Schoental, Liver lesions in young rats suckled by mothers treated with the pyrrolizidine (senecio) alkaloids lasiocarpine and retrorsine, J. Pathol. Bact. 77, 485 (1959).

    CAS  Google Scholar 

  71. R. Schoental, Liver disease and “natural” hepatoxins. Bull. W. H. O. 29, 823 (1963).

    CAS  PubMed  Google Scholar 

  72. J. A. Miller and E. C. Miller, in:Potential Carcinogenic Hazards from Drugs, p. 209, Springer, Berlin (1967).

    Google Scholar 

  73. J. A. Miller and E. C. Miller, The metabolic activation of carcinogenic aromatic amines and amides. Prog. Exp. Tumor Res. 11, 273 (1969).

    CAS  PubMed  Google Scholar 

  74. E. C. Miller and J. A. Miller, Studies on the mechanism of activation of aromatic amine and amide carcinogens to ultimate carcinogenic electrophilic reactants, Ann. N. Y. Acad. Sci. 163, 731 (1969).

    CAS  Google Scholar 

  75. E. K. Weisburger and J. H. Weisburger, Chemistry, carcinogenicity, and metabolism of N-2-nuorenamine and related compounds, Adv. Cancer Res. 5, 331 (1958).

    CAS  PubMed  Google Scholar 

  76. H. R. Gutman, D. Malejka-Giganti, E.J. Barry, and R. E. Rydell, On the correlation between the hepatocarcinogenicity of the carcinogen, N-2-fluorenylacetamide, and its metabolic activation by the rat. Cancer Res. 32, 1554 (1972).

    Google Scholar 

  77. Y. Yost, H. R. Gutman, and R. E. Rydell, The carcinogenicity of fluorenylhydroxamic acids and N-acetozy-N-fluorenylacetamides for the rat as related to the reactivity of the esters toward nucleophils. Cancer Res. 35, 447 (1975).

    CAS  PubMed  Google Scholar 

  78. E. Boyland, Polycyclic hydrocarbons, Brit. Med. Bull. 20, 121 (1964).

    CAS  PubMed  Google Scholar 

  79. H. V. A. Gelboin, in: “The Jerusalem Symposium on Quantum Chemistry and Biochemistry Physico-chemical mechanisms of Carcinogenesis” (E. D. Bergmann and B. Pullman, eds.), Vol. 1, p. 175 Israel. Acad. Sci. Hum., Jerusalem (1969).

    Google Scholar 

  80. P. L. Grover and P. Sims, Enzyme-catalyzed reactions of polycyclic hydrocarbons with DNA on protein in vitro, Biochem. J. 110, 159 (1969).

    Google Scholar 

  81. P. L. Grover, A. Hewer, and P. Sims, Formation of K-region epoxides as microsomal metabolites of pyrene and benzo(a)pyrene, Biochem. Pharmacol. 21 2713 (1972).

    CAS  PubMed  Google Scholar 

  82. P. O. P. Ts’o, S. A. Lesko, and R. S. Umans, in: “The Jerusalem Symposium on Quantum Chemistry and Biochemistry. Physico-chemical Mechanisms of Carcinogenesis” E. D. Bergmann, and B. Pullman, eds.). Vol. 1, p. 106, Israel Acad. Sci. Hum., Jerusalem (1969).

    Google Scholar 

  83. J. Fried and D. E. Schümm, One-electron transfer oxidation of 7,12-dimethylbenz(a)anthracene, a model for the metabolic activation of carcinogenic hydrocarbons, J. Am. Chem. Soc. 89, 5508 (1967).

    CAS  PubMed  Google Scholar 

  84. R. S. Umans, S. A. Lesko, Jr., and P. O. P. Ts’o, chemical linkage of carcinogenic 3,4-benzpyrene to DNA in aqueous solution induced by peroxide and iodine. Nature 221, 763 (1969).

    CAS  PubMed  Google Scholar 

  85. M. Wilk and H. Schwab, Zum Transportphänomen und Wirkungsmechanismus des 3,4-Benzpyrens in der Zelle, Z. Naturforsch. 23b, 431 (1968).

    Google Scholar 

  86. S. C. Chang, P. H. Terry, C. W. Woods, and A. B. Borkovec, Metabolism of hempa uniformly labeled with C14 in male house flies, J. Econ. Entomot. 60, 1623 (1967).

    CAS  Google Scholar 

  87. A. R. Jones and H. Jackson, The metabolism of hexamethylphosphoramide and relatedcompounds, Biochem. Pharmacol. 17, 2247 (1968).

    CAS  Google Scholar 

  88. P. L. Viola, Carcinogenic effect of vinyl chloride, Abstr. 10th Int. Cancer Cong. Houston, Vol. 29.

    Google Scholar 

  89. J. L. Creech and M. N. Johnson, Angiosarcoma of the liver in the manufacture of Polyvinylchloride, J. Occup. Med. 16, 150(1974).

    PubMed  Google Scholar 

  90. H. Bartsch, C. Malaveille, and R. Montesano, Human, rat and mouse liver-mediated mutagenicity of vinyl chloride in S. typhimurium strains, Int. J. Cancer 15, 429 (1975).

    CAS  PubMed  Google Scholar 

  91. U. Rannug, A. Johansson, C. Ramel and C. A. Wachtmeister, The mutagenicity of vinyl chloride after metabolic activation, Ambio3, 194 (1974).

    CAS  Google Scholar 

  92. A. Ducatman, K. Hirschhorn, and I. J. Selikoff, Vinyl chloride exposure and human chromosome aberrations, Mutat. Res. 31, 163 (1975).

    CAS  PubMed  Google Scholar 

  93. H. Bartsch and R. Montesano, Mutagenic and carcinogenic effects of vinyl chloride, Mutat. Res. 32, 93 (1975).

    CAS  PubMed  Google Scholar 

  94. C. Malaveille, H. Bartsch, A. Barbin, A. M. Camus, R. Montesano, A. Croisy, and P. Jacquignon, Mutagenicity of vinyl chloride, chloroethylene oxide, chloroacetaldehyde and chloroethanol. Biochem. Biophys. Res. Commun. 63, 363 (1975).

    CAS  PubMed  Google Scholar 

  95. G. F. Kolar, R. Fahrig, and E. Vogel, Structure-activity dependence in some novel ring-substituted 3, 3-dimethyl-l-phenyltriazenes. Genetic effects in Drosophila melanogaster and in Saccharomyces cerevisiae by a direct and a host-mediated assay, Chem.-Biol. Interactions 9, 365 (1974).

    CAS  Google Scholar 

  96. G. F. Kolar and J. Schlesiger, Urinary metabolites of l-aryl-3, 3-dimethyltriazenes in the rat (abstr.). Paper presented at the second meeting of the European Assoc. for Cancer Res., Heidelberg, Oct. 2–5, 1973, p. 246.

    Google Scholar 

  97. E. Vogel, Chemische konstitution und mutagene Wirkung. VI. Induktion dominanter und rezessiv-geschlechtsgebundener Letalmutationen durch Aryldialkyltriazene bei Drosophila melanogaster, Mutat. Res. 11, 397 (1971).

    CAS  PubMed  Google Scholar 

  98. E. Vogel, R. Fahrig, and G. Ohe, Triazenes, a new group of indirect mutagens; comparative investigations of the genetic effects of different aryldialkyltriazenes using Saccharomyces cerevisiae, the host-mediated assay, Drosophila melanogaster, and human chromosomes in vitro, Mutat. Res. 21, 123 (1973).

    CAS  Google Scholar 

  99. O. G. Fahmy, M. J. Fahmy, J. Massasso, and M. Ondrej, Differential mutagenicity of the amine and amide derivatives of nitroso-compounds in Drosophila melanogaster, Mutat. Res. 3, 201 (1966).

    CAS  PubMed  Google Scholar 

  100. O. G. Fahmy and M. J. Fahmy, Mutational mosaicism in relation to dose with the amine and amide derivatives of nitroso compounds in Drosophila melanogaster, Mutat. Res. 6, 139 (1968).

    CAS  Google Scholar 

  101. L. Pasternak, Mutagene Wirkung von Dimethylnitrosamin bei Drosophila melanogaster, Naturwissenschaften 49, 381 (1962).

    CAS  Google Scholar 

  102. L. Pasternak, Untersuchungen über die mutagene Wirkung von Nitrosaminen und Nitrosomethylharnstoff, Acta Biol. Med. Ger. 10, 436 (1963).

    CAS  PubMed  Google Scholar 

  103. L. Pasternak, Untersuchungen über die mutagene Wirkung verschiedener Nitrosamin- und Nitrosamid-Verbindungen, Arzneim.-forsch. 14, 802 (1964).

    CAS  Google Scholar 

  104. E. Vogel and B. Leigh, Concentration-effect studies with MMS, TEB, 2,4,6-triCl-PDMT and DEN on the induction of dominant and recessive lethals, chromosome loss and translocations in Drosophila sperm, Mutat. Res. 29, 383 (1975).

    CAS  PubMed  Google Scholar 

  105. E. Vogel, Strain variations in response to certain indirect mutagens in Drosophila melanogaster, Drosophila Inform. Serv. 50, 138 (1973).

    Google Scholar 

  106. C. Bertram and G. Höhne, Uber die radiomimetische Wirkung einiger Zytostatika im Mutationsversuch an Drosophila, Strahlentherapie 43, 386 (1959).

    Google Scholar 

  107. G. Röhrborn, Chemische Konstitution und mutagene Wirkung. IV. Zyklische N-Lostderivate, Mol. Gen. Genet. 102, 50 (1968).

    PubMed  Google Scholar 

  108. E. Vogel, Specific mutagenic activity of cyclophosphamide, trofosfamide, and ifosfamide in Drosophila melanogaster, Mutat. Res. 33, 221 (1975).

    CAS  Google Scholar 

  109. H. Druckrey, R. Preussmann, D. Schmähl, and M. Müller, Chemische Konstitution und carcinogene Wirkung bei Nitrosaminen, Naturwissenschaften 48, 134 (1961).

    CAS  Google Scholar 

  110. M. J. Lamb and L. J. Lilly, Induction of recessive lethals in Drosophila melanogaster by aflatoxin Bi, Mutat. Res. 11, 430 (1971).

    CAS  PubMed  Google Scholar 

  111. N. G. Brink, The effect of cyanide and azide on the mutagenic activity of the pyrrolizidine alkaloid heliotrine in Drosophila melanogaster, Z. Vererbungsl. 94, 331 (1963).

    CAS  PubMed  Google Scholar 

  112. N. G. Brink, The mutagenic activity of heliotrine in Drosophila. 1. Complete and mosaic sex-linked lethals, Mutat. Res. 3, 66 (1966).

    Google Scholar 

  113. N. G. Brink, The mutagenic activity of the pyrrolizidine alkaloid heliotrine in Drosophila melanogaster. II. Chromosome rearrangements. Mutat. Res. 8, 138 (1969).

    Google Scholar 

  114. A. M. Clark, The mutagenic activity of some pyrrolizidine alkaloids in Drosophila, Z. Vererbungsl. 91, 74 (1960).

    CAS  PubMed  Google Scholar 

  115. A. M. Clark, The brood pattern of sensitivity of theDrosophila testis to the mutagenic action of heliotrine, Z. Vererbungsl. 94, 115 (1963).

    CAS  Google Scholar 

  116. A. D. Tates, Cytodifferentiation during spermatogenesis in Drosophila melanogaster. Thesis, University of Leiden (1971).

    Google Scholar 

  117. A. Loveless,”Genetic and Allied Effects of Alkylating Agents,” Pennsylvania State University Pressxx (1966).

    Google Scholar 

  118. H. Lüers and G. Röhrborn, Chemische Konstitution und mutagene Wirkung. III. Äthylenimine, Mutat. Res. 2, 29 (1968).

    Google Scholar 

  119. E. Vogel and J. L. R. Chandler, Mutagenicity testing of cyclamate and some pesticides in Drosophila melanogaster, Experientia 30, 621 (1974).

    CAS  Google Scholar 

  120. L. W. Wattenberg and J. L. Leong, Histochemical demonstration of reduced pyridine nucleotide dependent polycyclic hydrocarbon metabolizing systems, J. Histochem. Cytochem. 10, 412 (1962).

    CAS  Google Scholar 

  121. M. Demerec, B. Wallace, E. M. Witkin, and G. Bertani, The gene, Carnegie Inst. Washington Yearb. 48, 156 (1949).

    Google Scholar 

  122. O. G. Fahmy and M.J. Fahmy, Specific genetic deletions by a carcinogenic hydrocarbon in Drosophila, Nature (London) 224, 1328 (1969).

    CAS  Google Scholar 

  123. O. G. Fahmy and M. J. Fahmy, Genetic deletions at specific loci by polycyclic hydrocarbons in relation to carcinogenesis, Int. J. Cancer 6, 250 (1970).

    CAS  PubMed  Google Scholar 

  124. O. G. Fahmy and M.J. Fahmy, Gene elimination in carcinogenesis: Reinterpretation of the somatic mutation theory, Cancer Res. 30, 195 (1970).

    CAS  PubMed  Google Scholar 

  125. O. G. Fahmy and M. J. Fahmy, Induction of bobbed (bb) mutations by polycyclic aromatic carcinogens in Drosophila, Mutat. Res. 9, 239 (1970).

    CAS  Google Scholar 

  126. O. G. Fahmy and M. J. Fahmy, Mutagenic selectivity for the RNA-forming genes in relation to the carcinogenicity of alkylating agents and polycyclic aromatics, Cancer Res. 32, 550(1972).

    CAS  PubMed  Google Scholar 

  127. O. G. Fahmy and M. J. Fahmy, Mutagenic properties of N-acetyl-2-aminofluorene and its metabolites in relation to the molecular mechanisms of carcinogenesis. Int. J. Cancer 9, 284 (1972).

    CAS  Google Scholar 

  128. O. G. Fahmy, M. J. Fahmy, Genetic properties of substituted derivatives of N-methyl-4-aminobenzene in relation to azo-dye carcinogenesis. Int. J. Cancer 10, 194 (1972).

    CAS  PubMed  Google Scholar 

  129. O. G. Fahmy and M. J. Fahmy, Mutagenic properties of benzo(a)pyrene and its methylated derivatives in relations to the molecular mechanisms of hydrocarbon carcinogenesis. Cancer Res. 33, 302 (1973).

    CAS  PubMed  Google Scholar 

  130. O. G. Fahmy and M. J. Fahmy, Oxidative activation of benz(a)anthracene and methylated derivatives in mutagenesis and carcinogenesis. Cancer Res. 33, 2354 (1973).

    CAS  PubMed  Google Scholar 

  131. J. W. Cramer, J. A. Miller, and E. C. Miller, N-hydroxylation: A new metabolic reaction observed in the rat with the carcinogen 2-acetylaminofluorene, J. Biol. Chem. 235, 885 (1960).

    CAS  PubMed  Google Scholar 

  132. J. A. Miller, J. W. Cramer and E. C. Miller, The N- and ring-hydroxylation of 2-acetylaminofluorene during carcinogenesis in the rat. Cancer Res. 20, 950 (1960).

    CAS  PubMed  Google Scholar 

  133. J. R. De Baun, J. Y. Rowley, E. C. Miller, and J. A. Miller, Sulfotransferase activation of N-hydroxy-2-acetylaminofluorene in rodent livers susceptible and resistant to this carcinogen, Proc. Soc. Exp. Biol. Med. 129, 268 (1968).

    Google Scholar 

  134. J. R. De Baun, E. C. Miller, and J. A. Miller, N-hydroxy-2-acetylaminofluorene sulfotransferase: Its probable role in carcinogens and in protein (methion-j-yl) binding in rat liver. Cancer Res. 30, 577 (1970).

    Google Scholar 

  135. J. H. Weisburger, R. S. Yamamoto, P. H. Grantham, and E. K. Weisburger, Evidence that sulphate esters are key ultimate carcinogens from N-hydroxy-N-2-fluorenylacetamide, Proc. Am. Assoc. Cancer Res. 11, 82 (1970).

    Google Scholar 

  136. R. J. Srám, The differences in the spectra of genetic changes in Drosophila melanogaster induced by chemosterilants TEPA and HEMPA, Folia Biol. (Prague) 18, 139 (1972).

    Google Scholar 

  137. O. G. Fahmy and M. J. Fahmy, Mutagenicity in the sperm of Drosophila and the structure of the “nitrogen-mustard” molecule, Heredity 15, 115 (1960).

    CAS  Google Scholar 

  138. E. R. Felix and V. M. Salceda, A technique for microinjection in Drosophila, Drosophila Inform. Serv. 39, 135 (1964).

    Google Scholar 

  139. E. R. Felix and R. Rodriguez, A microinjection technique for Drosophila, Drosophila Inform. Serv. 43, 180 (1968).

    Google Scholar 

  140. P. Mollet and F. E. Würgler, An apparatus to inject large numbers of Drosophila with constant amounts of fluid within a short time, Drosophila Inform. Service 50, 202 (1973).

    Google Scholar 

  141. R. L. Seecof, An injection apparatus for Drosophila, Drosophila Inform. Serv. 41, 185 (1966).

    Google Scholar 

  142. G. A. Sega and W. R. Lee, A vacuum injection technique for obtaining uniform dosages in D. melanogaster, Drosophila Inform. Serv. 45, 179 (1970).

    Google Scholar 

  143. A. J. Stocker, A simple microinjection apparatus forDrosophila, Drosophila Inform. Serv. 44, 124 (1969).

    Google Scholar 

  144. L. W. Shivertaker, The microinjection of Drosophila larvae, Drosophila Inform. Serv. 45, 188 (1970).

    Google Scholar 

  145. E. B. Lewis and F. Bacher, Method of feeding ethyl methane sulfonate (EMS) to Drosophila males, Drosophila Inform. Serv. 43, 193 (1968).

    Google Scholar 

  146. H. Lliers, Untersuchung iiber die Mutagenitat des Triäthylenmelamin (TEM) an Drosophila melanogaster, Archiv Geschwulstforschung 6, 11 (1953).

    Google Scholar 

  147. E. Vogel and H. Lüers, A comparison of adult feeding to injection in D. melanogaster, Drosophila Inform. Serv. 51, 113 (1974).

    Google Scholar 

  148. S. K. Hotchkiss and J. K. Lim, Mutagenic specificity of ethyl methanesulfonate affected by treatment methods, Drosophila Inform. Serv. 43, 116 (1968).

    Google Scholar 

  149. J. K. Lim and L. A. Snyder, The mutagenic effects of two monofunctional alkylating chemicals on mature spermatozoa of Drosophila, Mutat. Res. 6, 129 (1968).

    CAS  Google Scholar 

  150. Y. Fujita and U. Nakao, A test of mutagenicity and chromosome breaking ability of 4-nitroquinoline-N-oxide in D. melanogaster, Drosophila Inform. Serv. 37, 80 (1963).

    Google Scholar 

  151. Y. Nakao and Y. Morioka, A test of mutagenicity of 4-nitroquinoline-N-oxide in D. melanogaster, Drosophila Inform. Serv. 37, 110 (1963).

    Google Scholar 

  152. A. G. A. C. Knaap, and P. G. N. Kramers, Mutagenicity of hycanthone in Drosophila melanogaster, Mutat. Res. 22, 55 (1974).

    CAS  PubMed  Google Scholar 

  153. G. A. Sega, P. A. Gee, and W. R. Lee, Dosimetry of the chemical mutagen ethyl methane sulfonate in spermatozoa DNA from Drosophila melanogaster, Mutat. Res. 16, 203 (1972).

    CAS  PubMed  Google Scholar 

  154. D. L. Lindsley and E. H. Grell, Genetic variations of Drosophila melanogaster, Carnegie Inst. Washington Pubi, 627, 472 pp (1968).

    Google Scholar 

  155. C. Ramel, ed., Evolution of genetic risks of environmental chemicals, Ambio Special Report, Royal Swedish Academy of Sciences, No. 3 (1972), University of Stockholm.

    Google Scholar 

  156. Ch. Auerbach, Past achievements and future tasks of research in chemical mutagenesis, in Genetics Today (S. J. Geerts, ed.). Vol. 2, p. 275, Pergamon, London (1965).

    Google Scholar 

  157. I. H. Herskowitz, The incidence of chromosomal rearrangements and recessive lethal mutations following treatment of mature Drosophila sperm with 2, 4, 6-tri(ethylenimino)-1,3,5-triazine, Genetics 40, 574 (1955).

    Google Scholar 

  158. I. H. Herskowitz, Mutagenesis in mature Drosophila spermatozoa by “triazine” applied in vaginal douches, Genetics 41, 605 (1956).

    CAS  PubMed  Google Scholar 

  159. W. E. Ratnayake, Effects of storage on dominant lethals induced by alkylating agents (triethylene melamine and ethylenimine), Mutat. Res. 5, 271 (1968).

    CAS  PubMed  Google Scholar 

  160. W. Ratnayake, C. Strachan, and C. Auerbach, Genetical analysis of the storage effect of tiethylene melamine (TEM) on chromosome breakage in Drosophila, Mutat. Res. 4, 380 (1967).

    CAS  PubMed  Google Scholar 

  161. A. Schalet, The relationship between the frequency of nitrogen mustard induced translocations in mature sperm of Drosophila and utilization of sperm by females, Genetics 40, 534 (1955).

    Google Scholar 

  162. H. Slizynska, The progressive approximation, with storage, of the spectrum of TEM-induced chromosomal changes in Drosophila sperm to that found after irradiation, Mutat. Res. 8, 165 (1969).

    CAS  PubMed  Google Scholar 

  163. L. A. Snyder, Evidence of an essential difference between point mutations and chromosome breaks induced by triethylene melamine in Drosophila spermatozoa, Z. Vererbungsl. 94, 182 (1963).

    CAS  PubMed  Google Scholar 

  164. W. A. F. Watson, Evidence of an essential difference between the genetical effects of mono- and bifunctional alkylating agents, Z. Vererbungsl. 95, 374 (1964).

    CAS  PubMed  Google Scholar 

  165. W. A. F. Watson, Further evidence of an essential difference between the genetical effects of mono- and bifunctional alkylating agents, Mutat. Res. 3, 455 (1966).

    CAS  PubMed  Google Scholar 

  166. S. Abrahamson, W. C. Kiriazis, and E. M. Sabol, A storage effect of ethylmethanesulfonate (EMS) on the induction of translocations in Drosophila sperm, Drosophila Inform. Serv. 44, 110 (1969).

    Google Scholar 

  167. R. J. Srâm The effect of storage on the frequency of dominant lethals in Drosophila melanogaster. Mol. Gen. Genet. 106, 286 (1970).

    PubMed  Google Scholar 

  168. R. J. Srâm, The effect of storage on the frequency of translocations in Drosophila melanogaster, Mutat. Res. 9, 243 (1970).

    PubMed  Google Scholar 

  169. C. Auerbach and E. M. Sonbati, Sensitivity of Drosophila testis to the mutagenic action of mustard gas, Z. Vererbungsl. 91, 237 (1960).

    CAS  PubMed  Google Scholar 

  170. T. Alderson, Ethylation versus methylation in mutation ofEscherichia coli and Drosophila, Nature 203, 1404 (1964).

    CAS  PubMed  Google Scholar 

  171. T. Alderson and M. Pelecanos, The mutagenic activity of diethyl sulphate in Drosophila melanogaster. II. The sensitivity of the immature (larval) and adult testis, Mutat. Res. 1, 182 (1964).

    CAS  Google Scholar 

  172. A. H. Khan, Effect of storage of alkylated chromosomes on the mutagenic effectiveness of monofunctional alkylation, Mutat. Res. 8, 565 (1969).

    CAS  PubMed  Google Scholar 

  173. M. Pelecanos, Induction of cross-overs, autosomal recessive lethal mutations, and reciprocal translocations in Drosophila after treatment with diethyl sulfate, Nature (London) 210, 1294 (1966).

    Google Scholar 

  174. I. A. Rapoport, On the mutagenic action of dimethyl and diethyl sulphate, Dokl. Akad. Nauk SSSR 12, 12 (1947).

    CAS  Google Scholar 

  175. I. A. Rapoport, Chemical mutations in sex-chromosomes with a frequency above fifty per cent and increased proportions of semi-lethals, Dokl. Biol. Sci. 141, 1476 (1961).

    CAS  Google Scholar 

  176. S. S. Epstein and H. Shafner, Chemical mutagens in the human environment. Nature 219, 385 (1968).

    CAS  PubMed  Google Scholar 

  177. P. Propping, C. Röhrborn, and W. Buselmaier, Comparative investigations on the chemical induction of point mutations and dominant lethal mutations in mice, Mol. Gen. Genet. 117, 197 (1972).

    CAS  PubMed  Google Scholar 

  178. P. K. Datta and E. Schleiermacher, The effects of Cytoxan on the chromosomes of mouse bone marrow, Mutat. Res. 8, 623 (1969).

    CAS  PubMed  Google Scholar 

  179. G. Röhrborn and I. Hansmann, Induced chromosome aberrations in unfertilized oocytes of mice. Hum. Genet. 13, 184 (1971).

    Google Scholar 

  180. E. Schleiermacher, Uber den Einfluss von Trenimon und Endoxan auf die Meiose der männlichen Maus. II. Cytogenetische Befunde nach Behandlung mit Trenimon und Endoxan, Hum. Genet. 3, 134 (1966).

    CAS  Google Scholar 

  181. W. Schmid, D. T. Arakaki, N. A. Breslau, and J. C. Culbertson, The Chinese hamster bone marrow as anin vivo test system. I. Cytogenetic results on basic aspects of the methodology, obtained with alkylating agents, Hum. Genet. 11, 103 (1971).

    CAS  Google Scholar 

  182. W. M. Generoso, W. L. Russell, Sandra W. Huff, Sandra K. Stocet, and D. C. Crosslee, Effects of dose on the induction of dominant-lethal mutations and heritable translocations with ethyl methanesulfonate in male mice. Genetics 77, 741 (1974).

    CAS  PubMed  Google Scholar 

  183. B. E. Matter and W. M. Generoso, Effects of dose on the induction of dominant lethal mutations with triethylene melamine in male mice. Genetics 77, 753 (1974).

    CAS  PubMed  Google Scholar 

  184. B. E. Matter, I. Jaeger, and J. Grauwiler, Experimental model systems in toxicology and their significance in man, Excerpta Med. Int. Congr. Ser. 311, 275 (1973).

    Google Scholar 

  185. B. E. Matter and J. Grauwiler, Micronuclei in mouse bone-marrow cells. A simplein vivo model for the evaluation of drug-induced chromosomal aberrations, Mutat. Res. 23, 239 (1973).

    Google Scholar 

  186. C. Auerbach, “Mutation. Part I. Methods,” p. 20, Oliver and Boyd, Edinburgh and London (1962).

    Google Scholar 

  187. A. J. Bateman and S. S. Epstein, Dominant lethal mutations in mammals, in:“Chemical Mutagens” (A. Hollaender, ed.), p. 541, Plenum Press, New York (1971).

    Google Scholar 

  188. G. Pontecorvo, The problem of dominant lethals, J. Genet. 43, 295 (1942).

    Google Scholar 

  189. S. Abrahamson and I. H. Herskowitz, Induced changes in female germ cells of Drosophila. II. Oviposition rate and egg mortality in relation to intensity and dosage of X-rays applied to oocytes. Genetics 42, 405 (1957).

    CAS  PubMed  Google Scholar 

  190. K. Sankaranarayanan, The effects of nitrogen and oxygen treatments on the frequencies of X-ray-induced dominant lethals and on the physiology of the sperm in Drosophila melanogaster, Mutat. Res. 4, 641 (1967).

    CAS  PubMed  Google Scholar 

  191. J. D. Telfer, An improved technique for dominant lethal studies in Drosophila, Am. Nat. 88, 117 (1954).

    Google Scholar 

  192. F. E. Würgler, U. Petermann, and H. Ulrich, A refined test for X-ray induced dominant lethals in Drosophila, Experientia 24, 1293 (1968).

    Google Scholar 

  193. O. G. Fahmy and M. J. Fahmy, Cytogenetic analysis of the action of carcinogens and tumor inhibitors in Drosophila melanogaster. II. The mechanism of induction of dominant lethals by 2,4,6-triethyleneimino-l,3,5-triazine, J. Genet. 52, 603 (1954).

    CAS  Google Scholar 

  194. G. E. Nasrat, W. D. Kaplan, and C. Auerbach, A quantitative study of mustard gas induced chromosome breaks and re-arrangements in Drosophila melanogaster. Z. Indukt. Abstamm. Vererbungsl. 86, 249 (1954).

    CAS  PubMed  Google Scholar 

  195. L. A. Snyder and I. I. Oster, A comparison of genetic changes induced by a monofunctional and a polyfunctional alkylating agent in Drosophila melanogaster, Mutat. Res. 1, 437 (1964).

    Google Scholar 

  196. A. J. Bateman and A. C. Chandley, The sensitivity of the male germ cells ofDrosophila to methyl methanesulfonate. Heredity (London) 19, 711 (1964).

    CAS  Google Scholar 

  197. E. Vogel, Strong antimutagenic effects of fluoride on mutation induction by trenimon and l-phenyl-3, 3-dimethyltriazene in Drosophila melanogaster, Mutat. Res. 20, 339 (1973).

    CAS  PubMed  Google Scholar 

  198. R. Slacik-Erben and G. Obe, Suppressive activity by fluoride on the induction of chromosome aberrations in human cells in vitro with alkylating agents, Mutat. Res. 19, 369 (1973).

    PubMed  Google Scholar 

  199. R. N. Mukherjee and F. H. Sobels, The effect of sodium fluoride and iodoacetamide on mutation induction by X-irradiation in mature spermatozoa of Drosophila, Mutat. Res. 6, 217 (1968).

    CAS  Google Scholar 

  200. E. Vogel, Mutagenitatsuntersuchungen mit DDT und den DDT-Metaboliten DDE, DDD, DDOM und DDA an Drosophila melanogaster, Mutat. Res. 16, 157 (1972).

    CAS  Google Scholar 

  201. E. Vogel, Mutagenic activity of the insecticide oxydemetonmethyl in a resistant strain of Drosophila melanogaster, Experientia 30, 396 (1974).

    CAS  Google Scholar 

  202. F. H. Sobels, A comparison of the mutagenic effects of chemicals and ionizing radiation, in “Radiation Research—Biomedical, Chemical and Physical Perspectives,” 5th International Congress of Radiation Research, Seattle, Washington, July 14–20, 1974. Academic Press, New York, in press.

    Google Scholar 

  203. A. M. Clark, Mutagenic activity of the alkalid heliotrine in Drosophila, Nature (London) 183, 731 (1959).

    CAS  Google Scholar 

  204. L. M. Cook and A. C. E. Holt, Mutagenic activity in Drosophila of two pyrrolizidine alkaloids, J. Genet. 59, 273 (1966).

    CAS  Google Scholar 

  205. W. J. Burdette, Tumor incidence and lethal mutation rate in Drosophila treated with 20-methylcholanthrene, Cancer 72, 201 (1952).

    Google Scholar 

  206. R. J. Srám, The difference in the spectra of genetic changes in Drosophila melanogaster induced by chemosterilants TEPA and HEMPA, Folia Biol. (Prague) 18, 139 (1972).

    Google Scholar 

  207. E. A. Carlson and I.I. Oster, Chemical-mutagen induced mosaicism at the dumpy locus, Genetics 46, 856 (1961)

    Google Scholar 

  208. E. A. Carlson and I.I. Oster, Comparative mutagenesis of the dumpy locus in Drosophila melanogaster. II. Mutational mosaicism induced without apparent breakage by a monofunctional alkylating agent. Genetics, 47, 561 (1962).

    CAS  PubMed  Google Scholar 

  209. J. L. Southin, An analysis of eight classes of somatic and gonadal mutation at the dumpy locus in Drosophila melanogaster, Mutat. Res. 3, 54 (1966).

    CAS  PubMed  Google Scholar 

  210. I. I. Oster and E. Pooley, A comparison of the mutagenic effects of monofunctional and polyfunctional alkylating agents, Genetics 45, 1004 (1960).

    Google Scholar 

  211. L. S. Browning, Mutational spectrum in Drosophila after injection with nitrosoguanidine. Genetics 60, 165 (1968).

    Google Scholar 

  212. L. S. Browning, The mutational spectrum produced in Drosophila by N-methyl-N-nitro-N-nitrosoguanidine, Mutat. Res. 8, 157 (1969).

    CAS  PubMed  Google Scholar 

  213. A. H. Khan, The mutagenic effect of nitrosoguanidine in Drosophila, Drosophila Inform. Serv. 43, 112(1968).

    Google Scholar 

  214. O. G. Fahmy and M. J. Bird, Chromosome breaks among recessive lethals induced by chemical mutagens in Drosophila melanogaster, Heredity 6 (Suppl.), 149 (1953).

    Google Scholar 

  215. O. G. Fahmy and M. J. Fahmy, Cytogenetic analysis of the actions of carcinogens and tumour inhibitors in Drosophila melanogaster. III. Chromosome structural changes induced by 2,4,6-triethylenimino-l,3,5-triazine, J. Genet. 53, 181 (1955).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vogel, E., Sobels, F.H. (1976). The Function of Drosophila in Genetic Toxicology Testing. In: Hollaender, A. (eds) Chemical Mutagens. Chemical Mutagens. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-0892-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0892-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-0894-2

  • Online ISBN: 978-1-4684-0892-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics