Skip to main content

The Pendulous Accelerometer

  • Chapter
Modern Inertial Technology

Abstract

The pendulous accelerometer, one with an unconstrained single degree of freedom pendulum operated closed-loop, may well be the most common navigation accelerometer. In this chapter we will consider three types of pendulous accelerometer:

  1. 1.

    a generic pendulous instrument,

  2. 2.

    the Sundstrand “Q-Flex” design, and

  3. 3.

    the silicon micromachined accelerometer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. IEEE STD 337–1972. Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Pendulous, Analog, Torque Balance Accelerometer.

    Google Scholar 

  2. IEEE STD 530–1978. Standard Specification Format Guide and Test Procedure for Linear, Single-Axis, Digital, Torque Balance Accelerometer.

    Google Scholar 

  3. Jacobs, E.D., “Accelerometer”, U.S. Patent 3702073, 7 Nov. 1972.

    Google Scholar 

  4. Metzger, E.H., “Pendulous force-rebalance accelerometer”, in Ragan, R.R. (Ed.) “Inertial Technology for the Future”, IEEE Trans. on Aerospace and Electronic Systems AES-20, 4, 414–444, 1984.

    Google Scholar 

  5. Flamm, J., M. Hafen, B. Ryrko, B. Sinclair, “Development of a dry pendulum accelerometer at LITEF”, DGON Symposium Gyro Technology, Stuttgart, 1982.

    Google Scholar 

  6. Shintani, Y., K Sakuma, H. Yabe, H. Ito, K Nishikawa, K Kuramoto, T. Takahashi, “Development of a low cost high performance accelerometer”, DGON Symposium Gyro Technology, Stuttgart, 1983.

    Google Scholar 

  7. Kariv, R., “Development of TM-74 T AMAM low cost high performance accelerometer”, DGON Symposium Gyro Technology, Stuttgart, 1986.

    Google Scholar 

  8. Nicoli, J.A., “Perfect pendulous linear servo accelerometer model A834”, DGON Symposium Gyro Technology, Stuttgart, 1986. The hyperbolic title should be taken as intent, rather than achievement; the paper describes investigations into error causes.

    Google Scholar 

  9. Smithson, T.G., “A review of the mechanical design and development of a high performance accelerometer”, Mechanical Technology of Inertial Devices, Paper C49/87, Proc. Inst. Mech. Eng. (London), 1987.

    Google Scholar 

  10. Danielson, M.S., “Compensation of gain temperature coefficient in an optical pick-off for an accelerometer”, U.S. Patent 4 598 586, 8 July 1986.

    Google Scholar 

  11. Petersen, K.E., “Silicon as a mechanical material”, Proc. IEEE, 70, 5, pp. 420–457, May 1982.

    Article  Google Scholar 

  12. Angell, J.B., S.C. Terry, P.W. Barth, “Silicon micromechanical devices”, Scientific American, pp. 44–55, April 1983.

    Google Scholar 

  13. Satchell, D.W., “Silicon microengineering for accelerometers”, Mechanical Technology of Inertial Devices, Paper C46/87, Proc. Inst. Mech. Eng. (London), 1987.

    Google Scholar 

  14. Roylance, L.M., J.B. Angell, “A batch fabricated silicon accelerometer”, IEEE Trans. Electronics Devices, ED-26, pp. 1911–1917, 1979.

    Article  Google Scholar 

  15. Youmans, A.P., “Solid state force transducer, support and method of making same”, U.S. Patent 4 050 049, 20 Sept. 1977.

    Google Scholar 

  16. Block, B., “Solid state transducer and method of making same”, U.S. Patent 4 071 838, 31 Jan. 1978.

    Google Scholar 

  17. Stephens, M.L., Gray, P.R., “Temperature compensated piezoresistive transducer”, U.S. Patent 4 166 269,28 Aug. 1979.

    Google Scholar 

  18. Hansson, J.I., “Silicon accelerometer”, U.S. Patent 4 553 436, 19 Nov. 1985.

    Google Scholar 

  19. Lawrence, A.W., “A microIMU using advanced inertial sensors”, Proc. 14th Guidance Test Symposium, Holloman AFB, Oct. 1989.

    Google Scholar 

  20. Lefort, O., “A miniature, low cost, silicon micromachined servo accelerometer”, DGON Symposium Gyro Technology, Stuttgart, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lawrence, A. (1993). The Pendulous Accelerometer. In: Modern Inertial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0444-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0444-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0446-3

  • Online ISBN: 978-1-4684-0444-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics