Skip to main content

The Use of Fluorescence Anisotropy Decay in the Study of Biological Macromolecules

  • Chapter
Excited States of Biopolymers

Abstract

In recent years fluorescence measurements have evolved into one of the most widely used techniques in biochemistry. We shall be concerned here with one type of fluorescence measurement, fluorescence anisotropy decay, which has found extensive application in studies of the properties of biological macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Weber, Biochem. J. 51, 145, 165 (1952).

    Google Scholar 

  2. P. Wahl, in Biochemical Fluorescence: Concepts (R. F. Chen and H. Edelhoch, eds.), Marcel Dekker, New York (1975), p. 1.

    Google Scholar 

  3. F. Perrin, J. Phys. 7, 390 (1926).

    Google Scholar 

  4. F. Perrin, Ann. Phys. (Paris) 12, 169 (1929).

    Google Scholar 

  5. F. Penin, J. Phys. (Paris) 5, 497 (1934).

    Google Scholar 

  6. F. Perrin, J. Phys. (Pans) 7, 1 (1936).

    Google Scholar 

  7. I. Isenberg, R. D. Dyson, and R. Hanson, Biophys. J. 13, 1090 (1973).

    Article  Google Scholar 

  8. A. Grinwald and I. Z. Steinberg, Anal. Biochem. 59, 583 (1974).

    Article  Google Scholar 

  9. A. Grinwald, Anal. Biochem. 75, 260 (1976).

    Article  Google Scholar 

  10. A. Gafni, R. L. Modlin, and L. Brand, Biophys. J. 15, 263 (1975).

    Article  Google Scholar 

  11. A. Jabloński, Z. Phys. 106, 526 (1936).

    Google Scholar 

  12. A. Jabloński, Acta. Phys. Pol 10, 193 (1950).

    Google Scholar 

  13. J. Y. Yguerabide, in Methods in Enzymology, Vol. 26, Part C (C. Hirs and S. Timasheff, eds.), Academic Press, New York (1972), p. 98.

    Google Scholar 

  14. R. Memming, Z. Phys. Chem. 28, 168 (1961).

    Article  Google Scholar 

  15. T. Tao, Biopolymers 8, 609 (1909).

    Article  Google Scholar 

  16. G. G. Belford, R. L. Belford, and G. Weber, Proc. Natl. Acad. Sci. USA 69, 1932 (1972).

    Article  Google Scholar 

  17. P. Wahl, C. R. Acad. Sci. 263, 1525 (1966).

    Google Scholar 

  18. P. Wahl, Biochim. Biophys. Acta. 175, 55 (1969).

    Google Scholar 

  19. M. Ehrenberg and R. Rigler, Chem. Phys. Lett. 14, 539 (1972).

    Article  Google Scholar 

  20. R. Rigler and M. Ehrenberg, Q. Rev. Biophys. 9, 19 (1976).

    Google Scholar 

  21. S. C. Harvey and H. C. Cheung, Proc. Natl. Acad. Sci. USA 69, 3670 (1972).

    Article  Google Scholar 

  22. Y. Gottlieb and P. Wahl, J. Chim. Phys. 60, 849 (1963).

    Google Scholar 

  23. K. Kinosita, S. Kawato, and A. Ikegami, Biophys. J. 20, 289 (1977).

    Article  Google Scholar 

  24. R. D. Dale and J. Eisinger, Biopolymers 13, 1573 (1974).

    Article  Google Scholar 

  25. J. Oton, E. Bucci, R. F. Steiner, C. Fronticelli, D. Franchi, J. Montemarano, and A. Martinez, J. Biol. Chem. 256, 7248 (1981).

    Google Scholar 

  26. I. Munro, I. Pecht, and L. Stryer, Proc. Natl. Acad. Sci. USA 76, 56 (1979).

    Article  Google Scholar 

  27. W. R. Ware, in Creation and Detection of the Excited State, Vol. 1, Part A, Marcel Dekker, New York (1971).

    Google Scholar 

  28. I. Isenberg, in Biochemical Fluorescence: Concepts (R. F. Chen and H. Edelhoch, eds.), Vol. 1, Marcel Dekker, New York (1975), p. 43.

    Google Scholar 

  29. R. Schuyler and I. Isenberg, Rev. Sci. Instrum. 42, 813 (1971).

    Article  Google Scholar 

  30. J. H. Easter, R. P. DeToma, and L. Brand, Biophys. J. 16, 571 (1976).

    Article  Google Scholar 

  31. M. G. Badea and L. Brand, Methods Enzymol. 61, 378 (1979).

    Article  Google Scholar 

  32. B. Valeur and G. Weber, J. Chem. Phys. 69, 2393 (1978).

    Article  Google Scholar 

  33. G. Weber and M. Shinitzky, Proc. Natl. Acad. Sci. USA 65, 823 (1970).

    Article  Google Scholar 

  34. W. C. Galley and R. M. Purkey, Proc. Natl. Acad. Sci. USA 67, 1116 (1970).

    Article  Google Scholar 

  35. D. A. Cowburn, E. M. Bradbury, C. Crane-Robinson, and W. B. Gratzer, Eur. J. Biochem. 14, 83 (1970).

    Article  Google Scholar 

  36. W. J. Browne, A. C. T. North, and D. C. Phillips, J. Mol. Biol. 42, 65 (1969).

    Article  Google Scholar 

  37. C. C. F. Blake, D. F. Koenig, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma, Nature (London) 206, 757 (1965).

    Article  Google Scholar 

  38. A. L. Barel, J. P. Prisels, E. Maes, Y. Looze, and J. Leonis, Biochim. Biophys. Acta 257, 288 (1972).

    Google Scholar 

  39. J. C. Lee and S. N. Timasheff, Biochemistry 13, 257 (1974).

    Article  Google Scholar 

  40. E. K. Achter and I. D. A. Swan, Biochemistry 10, 2976 (1971).

    Article  Google Scholar 

  41. L. H. Tang, Y. Kubota, and R. F. Steiner, Biophys. Chem. 4, 203 (1976).

    Article  Google Scholar 

  42. R. A. Kenner and H. Neurath, Biochemistry 10, 551 (1971).

    Article  Google Scholar 

  43. S. Udenfriend, S. Stein, P. Bohlen, W. Dairman, W. Leimgruber, and M. Weigele, Science 178, 871 (1972).

    Article  Google Scholar 

  44. D. C. Phillips, Proc. Natl. Acad. Sci. USA 57, 484 (1967).

    Article  Google Scholar 

  45. H. B. Bull and K. Breese, Arch. Biochem. Biophys. 128, 488 (1968).

    Article  Google Scholar 

  46. J. A. Weltman and G. M. Edelman, Biochemistry 6, 1437 (1967).

    Article  Google Scholar 

  47. J. C. Brochon and P. Wahl, Eur. J. Biochem. 25, 20 (1972).

    Article  Google Scholar 

  48. P. Wahl, Biochim. Biophys. Acta 175, 55 (1969).

    Google Scholar 

  49. J. Yguerabide, H. F. Epstein, and L. Stryer, J. Mol. Biol. 51, 573 (1970).

    Article  Google Scholar 

  50. C. Lovejoy, D. A. Holowka, and R. E. Cathou, Biochemistry 16, 3668 (1977).

    Article  Google Scholar 

  51. D. A. Holowka and R. E. Cathou, Biochemistry 15, 3373, 3379 (1976).

    Article  Google Scholar 

  52. R. C. Siegel and R. E. Cathou, Biochemistry 20, 192 (1981).

    Article  Google Scholar 

  53. R. A. Mendelson, M. F. Morales, and J. Botts, Biochemistry 12, 2250 (1973).

    Article  Google Scholar 

  54. I. Miller and R. T. Tregear, J. Mol. Biol. 70, 85 (1972).

    Article  Google Scholar 

  55. R. A. Mendelson and P. H. C. Cheung, Biochemistry 17, 2140 (1978).

    Article  Google Scholar 

  56. M. Miki, P. Wahl, and J. C. Auchet, Biochemistry 21, 3662 (1982).

    Article  Google Scholar 

  57. S. Fujime and S. Ishiwata, J. Mol. Biol. 62, 254 (1971).

    Article  Google Scholar 

  58. D. D. Thomas, J. C. Seidel, and J. Gergely, J. Mol. Biol. 132, 257 (1979).

    Article  Google Scholar 

  59. C. Hall and H. Slayter, J. Biochem. Biophys. Cytol 5, 11 (1959).

    Article  Google Scholar 

  60. R. F. Doolittle, Adv. Protein Chem. 27, 1 (1973).

    Article  Google Scholar 

  61. W. E. Fowler, R. R. Hantgan, J. Hermans, and H. P. Erickson, Proc. Natl Acad. Sci. USA 78, 4872 (1981).

    Article  Google Scholar 

  62. P. Johnson and E. Mihalyi, Biochim. Biophys. Acta 102, 476 (1965).

    Article  Google Scholar 

  63. R. R. Hantgan, Biochemistry 21, 1822 (1982).

    Article  Google Scholar 

  64. R. F. Doolittle, Horiz. Biochem. Biophys. 3, 164 (1977).

    Google Scholar 

  65. W. R. Krigbaum and R. S. Hsu, Biochemistry 14, 2542 (1975).

    Article  Google Scholar 

  66. J. B. A. Ross, K. W. Rousslang, and L. Brand, Biochemistry 20, 4361 (1981).

    Article  Google Scholar 

  67. C. I. Branden, H. Jornvall, H. Eklund, and B. Furugren, Enzymes, 3rd edn., Vol. II, Academic Press, New York (1975), p. 103.

    Google Scholar 

  68. J. B. A. Ross, C. J. Schmidt, and L. Brand, Biochemistry 20, 4369 (1981).

    Article  Google Scholar 

  69. J. R. Lakowicz and G. Weber, Second Biophysical Discussion, Biophysical Society (1980), p. 465.

    Google Scholar 

  70. J. R. Lakowicz and G. Weber, Biochemistry 12, 4161, 4171 (1973).

    Article  Google Scholar 

  71. E. Bucci, C. Fronticelli, K. Flanigan, J. Perlman, and R. F. Steiner, Biopolymers 18, 1261 (1979).

    Article  Google Scholar 

  72. M. Sassaroli, E. Bucci, and R. F. Steiner, J. Biol. Chem. 257, 10136 (1982).

    Google Scholar 

  73. J. K. Moffat, J. Mol. Biol. 35, 135 (1971).

    Article  Google Scholar 

  74. H. M. McConnell and B. C. McFarland, Q. Rev. Biophys 3, 91 (1970).

    Article  Google Scholar 

  75. H. M. McConnell and C. Hamilton, Proc. Natl. Acad. Sci. USA 60, 776 (1968).

    Article  Google Scholar 

  76. L. Stryer, J. Mol. Biol. 13, 483 (1965).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Steiner, R.F. (1983). The Use of Fluorescence Anisotropy Decay in the Study of Biological Macromolecules. In: Steiner, R.F. (eds) Excited States of Biopolymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9334-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9334-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9336-2

  • Online ISBN: 978-1-4615-9334-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics