Skip to main content

Status of Stanford Superconductive Monopole Detectors

  • Chapter
Magnetic Monopoles

Part of the book series: NATO Advanced Science Institutes Series ((NSSB,volume 102))

Abstract

The theoretical similarities between flux quantization in superconductors and Dirac magnetic monopoles make superconductive systems natural detectors for these elusive particles. More recently, grand unification theories have been shown to predict the existence of stable supermassive magnetically charged particles possessing the Dirac unit of magnetic charge. These particles would be nonrelativistic, weakly ionizing, and extremely penetrating; and thus may have eluded previous searches. In this paper we describe three generations of superconductive detectors designed to look for a cosmic-ray flux of such particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Cabrera, Ph.D. Thesis, Stanford university, 1975

    Google Scholar 

  2. B. Cabrera and F. van Kann, Acta Astronautioa 5, 125 (1978)

    Article  Google Scholar 

  3. B. Cabrera, in “Third Workshop on Grand Unification,” P. H. Frampton, S. L. Glashow, and H. van Dam, eds., Birkhauser, Boston (1982).

    Google Scholar 

  4. For complete review, see: P. Goddard and D. I. Olive, Rep. Prog. Phys. 41, 1357 (1978).

    Article  ADS  Google Scholar 

  5. P.A.M. Dirac, Proc. Roy. Soc. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  6. P.A.M. Dirac, Phys. Rev. 74, 817 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. For review of experiments, see: A. S. Goldhaber and J. Smith, Rep. Prog. Phys. 38, 731 (1975)

    Google Scholar 

  8. B. Cabrera and W. P. Trower, “Foundations of Physics,” Feb. (1983); G. Giacomelli in these proceedings.

    Google Scholar 

  9. G. ’t Hooft, Nucl. Phys. 79B, 276 (1974)

    Article  ADS  Google Scholar 

  10. G. ’t Hooft, Nucl. Phys. 105B, 538 (1976)

    Article  ADS  Google Scholar 

  11. A. M. Polyakov, JETP Letts. 20, 194 (1974).

    ADS  Google Scholar 

  12. See papers by A. S. Goldhaber and J. Ellis in these proceedings.

    Google Scholar 

  13. J. P. Preskill, Phys. Rev. Lett. 29, 1365 (1979)

    Article  ADS  Google Scholar 

  14. G. Lazarides, Q. Shafi and T. F. Walsh, Phys. Lett. 100B, 21 (1981).

    ADS  Google Scholar 

  15. L. P. Gorkov, Sov. Phys. JETP 9, 1364 (1959).

    MathSciNet  Google Scholar 

  16. See for example: A. L. Fetter and J. D. Walecka, “Quantum Theory of Many-Particle Systems,” McGraw-Hill, San Francisco (1971), Chap. 13.

    Google Scholar 

  17. B. S. Deaver and W. M. Fairbank, Phys. Rev. Lett. 7, 43 (1961)

    Article  ADS  Google Scholar 

  18. R. Doll and M. Nabauer, Phys. Rev. Lett. 7, 51 (1961).

    Article  ADS  Google Scholar 

  19. B. Cabrera, S. Felch and J. T. Anderson, “Precision Measurement and Fundamental Constants II,” B. N. Taylor and W. D. Phillips, eds., Nat. Bur. Stand. (U.S.), Spec. Publ. No. 617, in press.

    Google Scholar 

  20. B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982).

    Article  ADS  Google Scholar 

  21. See also past work on superconductive detectors for static matter searches: L. W. Alvarez, Lawrence Radiation Laboratory Physics Note 470, 1963 (unpublished)

    Google Scholar 

  22. P. Eberhard, Lawrence Radiation Laboratory Physics Note 506, 1964 (unpublished)

    Google Scholar 

  23. L. J. Tassie, Nuovo Cimento 38, 1935 (1965)

    Article  Google Scholar 

  24. L. Vant-Hull, Phys. Rev. 173, 1412 (1968)

    Article  ADS  Google Scholar 

  25. P. Eberhard, D. Ross, L. Alvarez and R. Watt, Phys. Rev. D 4, 3260 (1971). For other recent work on superconductive detectors, see papers by C. C. Tsuei and D. Cline in these proceedings.

    Article  ADS  Google Scholar 

  26. B. Cabrera, R. Gardner and R. King, in preparation.

    Google Scholar 

  27. For review, see: A. H. Guth in these proceedings.

    Google Scholar 

  28. M. S. Turner, E. N. Parker and T. J. Bogdan, Phys. Rev. D 26, 1296 (1982); also see papers by M. S. Turner and E. Purcell in these proceedings.

    Article  ADS  Google Scholar 

  29. E. E. Salpeter, S. L. Shapiro and I. Wasserman, Phys. Rev, Lett. 49, 1114 (1982); also I. Wasserman in these proceedings.

    Article  ADS  Google Scholar 

  30. S. Dimopoulos, S. L. Glashow, E. M. Purcell and F. Wilczek, Nature 298, 824 (1982).

    Article  ADS  Google Scholar 

  31. S. P. Ahlen and K. Kinoshita, Phys. Rev. D 26, 2347 (1982); S. P. Ahlen in these proceedings.

    Article  ADS  Google Scholar 

  32. S. D. Drell, N. M. Kroll, M. T. Mueller, S. J. Parke and M. A. Ruderman, SLAC-PUB-3012.

    Google Scholar 

  33. C. Dokos and T. Tomaras, Phys. Rev. D 21, 2940 (1980)

    Article  ADS  Google Scholar 

  34. A. Blaer, N. Christ and J. Tang, Phys. Rev. Lett. 47, 364 (1981)

    Article  ADS  Google Scholar 

  35. F. Wilczek, Phys. Rev. Lett. 48, 1146 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  36. V. Rubakov, JETP Lett. 33, 644 (1981)

    ADS  Google Scholar 

  37. V. Rubakov, Nucl. Phys. B 203, 311 (1982)

    Article  ADS  Google Scholar 

  38. C. Callan, Phys. Rev. D 26, 2058 (1982).

    Article  ADS  Google Scholar 

  39. E. W. Kolb, S. Colgate and J. A. Harvey, Phys. Rev. Lett. 49, 1373 (1982); S. Dimopoulos, J. Preskill and F. Wilczek, Phys. Lett., in press; J. Ellis in these proceedings.

    Article  ADS  Google Scholar 

  40. F. Bloch, Phys. Rev. B 2, 109 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Cabrera, B. (1983). Status of Stanford Superconductive Monopole Detectors. In: Carrigan, R.A., Trower, W.P. (eds) Magnetic Monopoles. NATO Advanced Science Institutes Series, vol 102. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7370-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7370-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7372-2

  • Online ISBN: 978-1-4615-7370-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics