Skip to main content

Rayleigh-Taylor Instability and Resulting Failure Modes of Ablatively Imploded Inertial Fusion Targets

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

The ablation process is thought to be useful for driving the spherical implosion of inertial confinement fusion (ICF) targets1. By “ablation” is meant the process of applying pressure continuously in time to a surface by heating the surface. The pressure applied may be thought of as the reaction to acceleration of heated material away from the surface. In fact, an implosion is only “ablative” if the time scale required for establishment of the outward flow from the surface is short compared to the implosion time; i.e., if the ablative flow is quasistationary. If the spherical target pellet is a shell of initial thickness Δrp and radius rp which is hollow or contains a much lower density fuel, then this shell, whose initial aspect ratio is defined as Ap = rp/Δrp, will accelerate inwardly. This acceleration causes the outside surface of the shell to experience instability of the Rayleigh-Taylor type, which is thought to be potentially troublesome for Ap ≳ 52. Subsequently, as the implosion of the shell is decelerated by compression of lower density fuel material inside, the inside surface becomes unstable . This article presents a theory of these instabilities and potential modes of failure caused by them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Nucholls, L. Wood, A. Thiessen, and G. Zimmerman, Nature (London) 239, 139 (1972),

    Article  ADS  Google Scholar 

  2. J. S. Clarke, H. N. Fisher, and R. J. Mason, Phys. Rev. Lett. 30, 89 (1973);

    Article  ADS  Google Scholar 

  3. J. S. Clarke, H. N. Fisher, and R. J. Mason, Phys. Rev. Lett. 30, 249 (1973).

    Article  ADS  Google Scholar 

  4. R. L. McCrory and R. L. Morse, Phys. Fluids 19, 175 (1976),

    Article  ADS  Google Scholar 

  5. Henderson, D. B., McCrory, R. L., Morse, R. L., Phys. Rev. Lett. 33 (1974) 205.

    Google Scholar 

  6. G. Fraley, W. Gula, D. Henderson, R. McCrory, R. Malone, R. Mason, and R. Morse, in Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, Japan, 1974 (International Atomic Energy Agency, Vienna, Austria, 1974), p. 543.

    Google Scholar 

  7. R. L. McCrory, R. L. Morse, and K. A. Taggart, Nucl. Sci. Eng., 12, (1977).

    Google Scholar 

  8. S. J. Gitomer, R. L. Morse, and B. S. Newberger, Phys. Fluids 12, 234 (1977).

    Article  ADS  Google Scholar 

  9. L. Montierth, Doctoral dissertation, University of Arizona, 1982, L. Montierth and R. Morse (to be published in Phys. Fluids).

    Google Scholar 

  10. R. L. McCrory, L. Montierth, R. L. Morse, and C. P. Verdon, in Laser Interactions and Related Plasma Phenonmena (Plenum, New York, 1981), Vol. 5, pp. 713–742,

    Google Scholar 

  11. R. L. McCrory, L. Montierth, R. L. Morse, and C. P. Verdon, Phys. Rev. Lett. 46, 336 (1981).

    Article  ADS  Google Scholar 

  12. H. Takabe, L. Montierth, and R. Morse (to be published in Phys. Fluids).

    Google Scholar 

  13. M. Matzen, and R. Morse, Phys. Fluids 22, 4, (1979).

    Google Scholar 

  14. M. Widner, Sandia Laboratories Report SAND79–2454.

    Google Scholar 

  15. Ya. B. Zeldovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomenon (Academic, New York, 1967), Vol. II. pp. 72–74.

    Google Scholar 

  16. C. P. Verdon, R. L. McCrory, R. L. Morse, G. R. Baker, D. I. Meiron and S. A. Orszag, Phys. Fluids 25, 9, (1982).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Montierth, L., Morse, R. (1984). Rayleigh-Taylor Instability and Resulting Failure Modes of Ablatively Imploded Inertial Fusion Targets. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics