Skip to main content

Absorption, Double Layers, and Dynamics at Laser-Plasma Interaction and Pellet Fusion Gains With Reheat

  • Chapter
Laser Interaction and Related Plasma Phenomena

Abstract

Absorption by Coulomb collisions has been studied comparing the classical low frequency limit, the QED result and the anomalous resistivity case. A derivation of the two-fluid plasma equations for HF monochromatic waves arrived at an additional effective collision frequency, and a new interpretation of D against E. Collisionless (dynamic) absorption by nonlinear forces was studied to derive the decay and broadening of a wave packet when moving through a homogeneous collisionless plasma. The fast time dependence of nonlinear forces was studied and the reflexion of wave packets evaluated. — Numerical studies of one dimensional two fluid plasmas with nonlinear forces and nonlinear optical constants describe the very fast evolution of space charges, electrostatic oscillations and double layers by nonlinear force interaction apart from a very detailed dynamics at plasma interaction with picosecond laser pulses. — Fusion gain calculations were extended with special attention to bremsstrahlung and strong coupling (Kalman-Golden-model). Aspects of fusion-fission hybrid breeder reactor were studied for various conditions of inertial confinement fusion. Fusion gains were calculated for volume ignition with different reheat models and the emitted alpha spectra were analysed. The phenomenological inclusion of space charge effects for α-upshifts was used for comparison with given experiments. Including the spin-polarized increase of fusion cross sections by 50%, conditions are found for optimized DT pellets of compression to 1000 times solid state density at input energy Eo near 1 MJ which arrive at some gains for ten times smaller Eo than in the unpolarized case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Hora, “Hypothesis for the Quantization”, in Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York 1983), Vol. 6, p.

    Google Scholar 

  2. D.A. Jones, E.L. Kane, P. Lalousis, and H. Hora,”GeV Ions from Laser Produced Plasmas”, in Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York 1983), Vol. 6, p.

    Google Scholar 

  3. H. Hora, and G. Viera, “The Lateral Injection Free Electron Laser”, in Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York 1983), Vol. 6, p.

    Google Scholar 

  4. G. Yonas, Sci. Am. 239, No. 5, 40 (1978).

    Article  ADS  Google Scholar 

  5. B.M. Schwarzschild, Phys. Today 33, No. 12, 21 (1980);

    Article  ADS  Google Scholar 

  6. G. Yonas, and J. Pace Van Devender, in Laser Interaction and Related Plasma Phenomena, H. Hora, and G.H. Miley eds. (Plenum, New York, 1983) Vol. 6, p.

    Google Scholar 

  7. G. Cooperstein, S.A. Goldstein, D. Mosher, R.J. Baker, J.R. Boller, D.G. Colombant, A. Drobot, R.A. Meger, W.F. Oliphant, P.F. Ottinger, F.L. Sandel, S.J. Stephanakis, and F.G. Young, in Laser Interaction and Related Plasma Phenomena, H. Schwarz et al eds. (Plenum, New York, 1981) Vol. 5, p. 105.

    Google Scholar 

  8. H. Hora, “Historical Remarks on Beam Fusion”, in Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York, 1983) Vol. 6, p.

    Google Scholar 

  9. H. Hora, Physics of Laser Driven Plasmas (Wiley, New York, 1981).

    Google Scholar 

  10. H. Hora, and H. Wilhelm, Nucl. Fusion 10, 111 (1970).

    Article  Google Scholar 

  11. B. Babuel-Peyrissac, Proc. 6th Int. Quant. El. Conf. Kyoto 1970, p. 14.

    Google Scholar 

  12. J.A. Gaunt, Proc. Roy. Soc. A126, 654 (1930);

    ADS  Google Scholar 

  13. A.W. Maue, Ann. Physik 13, 161 (1932).

    Article  ADS  Google Scholar 

  14. H. Hora, Nuovo Cimento 64B, 1(1981); see ref. [7], p. 37.

    ADS  Google Scholar 

  15. H.A. Bethe, Handb.d. Physik, H. Geiger and K. Scheel eds. (Springer, Berlin, 1933) Vol. 24 part 1, p. 497;

    Google Scholar 

  16. R.E. Marshak, Ann. N.Y. Acad. Sci. 42, 49 (1941).

    Article  ADS  Google Scholar 

  17. L Spitzer, and R. Harm, Phys. Rev. 89, 977 (1953).

    Article  ADS  MATH  Google Scholar 

  18. S.J. Stephanakis, S.H. Levine, D. Mosher, M.l. Vitkovitzky, and F. Young, Phys. Rev. Lett. 29,568 (1972).

    Article  ADS  Google Scholar 

  19. G. Grieger et al., IAEA Meeting on Plasma and Fusion Research, Brussels, June 1980.

    Google Scholar 

  20. V.A. Lynbimov, E.G. Novikov, V.Z. Nozik, E.F. Tretyakov, and V.S. Kosik, Phys. Lett. 94B, 266 (1980);

    ADS  Google Scholar 

  21. J.J. Simpson, Phys. Rev. D23, 649 (1981).

    ADS  Google Scholar 

  22. H. Hora, Phys. Fluids 12, 181 (1969).

    Article  ADS  Google Scholar 

  23. G.W. Kentwell, and H. Hora, Plasma Physics 22, 1051 (1980).

    Article  ADS  Google Scholar 

  24. H. Alfven, Cosmic Plasmas (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  25. D.A. Jones (unpublished).

    Google Scholar 

  26. E.J. Valeo, and W.L. Kruer, Phys. Rev. Lett. 33, 750 (1974).

    Article  ADS  Google Scholar 

  27. C. Yamanaka, S. Nakai, Y. Kato, T. Sasaki, and T. Mochizuki, Laser Interaction and Related Plasma Phenomena, H. Schwarz et al eds. (Plenum, New York, 1981) Vol. 5, p. 560 and Fig. 20.

    Google Scholar 

  28. G.W. Kentwell, Ph.D. thesis, Univ. New South Wales 1983.

    Google Scholar 

  29. R. Dragila, and H. Hora, Phys. Fluids 25, 1057 (1982).

    Article  ADS  MATH  Google Scholar 

  30. R. Klima, and V.A. Petrzilka, Czech. J. Phys. B22, 896 (1972).

    Article  ADS  Google Scholar 

  31. W.I. Linlor, Appl. Phys. Lett. 3, 210 (1963).

    Article  ADS  Google Scholar 

  32. N.R. Isenor, Appl. Phys. Lett. 4, 152 (1964).

    Article  ADS  Google Scholar 

  33. S. Namba, H. Schwarz, and P.H. Kim, Proc. IEEE Sympos. Electrons, Ion and Laser Beam Technol., Berkeley, May 1967, p. 861.

    Google Scholar 

  34. A.G. Engelhardt, T.V. George, H. Hora, and J.L Pack, Phys. Fluids 13,212 (1970).

    Article  ADS  Google Scholar 

  35. H. Hora, 2nd Europ. Conf. Laser Interaction with Matter, Ecole Polyt., Paris, Febr. 1967.

    Google Scholar 

  36. H. Hora, Laser Plasma and Nuclear Energy (Plenum, New York, 1975), p. 23.

    Book  Google Scholar 

  37. H. Hora, Z. Phys. 226, 156 (1969).

    Article  ADS  Google Scholar 

  38. C.W. Mendel, and J.N. Ohlsen, Phys. Rev. Lett. 34, 859 (1975).

    Article  ADS  Google Scholar 

  39. J.S. Pearlman, and G.H. Dahlbacka, Appl. Phys. Lett. 31,414 (1977).

    Article  ADS  Google Scholar 

  40. S. Eliezer, B. Arad, A. Borowitz, B.S. Fraenkel, Y. Gazit, I. Gilath, S. Jaeckel, A.D. Krumbein, R. Lalluz, H.M. Loebenstein, A. Ludmirsky, Y. Paiss, D. Salzmann, N. Spector, A. Sternlieb, and H. Salzmann, in Laser Interaction and Related Plasma Phenomena, H. Hora, and G.H. Miley eds. (Plenum, New York, 1983), Vol. 6, p.

    Google Scholar 

  41. V. Gazit, J. Delettrez, T.C. Bristow, T.C. Entenberg, and J. Soures, Phys. Rev. Letters 43, 1943 (1979).

    Article  ADS  Google Scholar 

  42. P. Wagli, and T.P. Donaldson, Phys. Rev. Lett. 40, 875 (1978).

    Article  ADS  Google Scholar 

  43. R.H. Roger, Fluid Mechanics (Routledge, London 1978).

    Google Scholar 

  44. H. Kuroda, H. Masuko, and S. Maekawa, Jap. J. Appl. Phys. 17 (Suppl. 17–2) 484 (1978).

    Google Scholar 

  45. T. Yabe, K. Mima, K. Yoshikowa, H. Takabe, and M. Hamano, Nucl. Fusion 21, 803 (1981).

    Article  Google Scholar 

  46. P. Mulser in Laser-Plasma Interactions, R.A. Cairns and J.J. Sanderson eds. (Scottish Univ. Summer Sch. Edinburgh (1980) p. 91.

    Google Scholar 

  47. S. Singer, Appl. Phys. B28, 269 (1982);

    ADS  Google Scholar 

  48. A. Hauer, in Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York, 1983) Vol. 6, p.

    Google Scholar 

  49. O.N. Krokhin, Yu. A. Michailov, V.V. Pustovalov, A.A. Rupasov, V.P. Silin, G.V. Sklizkov, and A.S. Shikanov, JETP-Letters 20, 105 (1974);

    ADS  Google Scholar 

  50. N.G. Basov, Yu. A. Zakharenkov, N.N. Sorev, A.A. Rupasov, G.V. Sklizkov, and A.S. Shikanov, Thermonuclear Fusion by Lasers (Radiotekhnika, Moscow, 1982) Vol. 26.

    Google Scholar 

  51. The most detailed experiments on the “butterfly” anisotropic X-ray emission at Livermore permit no doubt on nonthermalized energetic electrons: H.G. Ahlstrom, J. Physique 40 C7–97 (1979);

    Google Scholar 

  52. H.G. Ahlstrom, Physics of Laser Fusion, (Lawrence Livermore, 1982) p. 270.

    Google Scholar 

  53. R. Decoste, J.-C. Kieffer, M. Piche, H. Pepin, and P. Lavigne, Phys. Fluids 25, 1699 (1982).

    Article  ADS  Google Scholar 

  54. M.D.J. Burgess, R. Dragila, B. Luther-Davies, K.A. Nugent, and G.J. Tallents, in Laser Interaction and Related Plasma Phenomena, H. Hora, and G.H. Miley eds. (Plenum, New York, 1983) Vol. 6, p.

    Google Scholar 

  55. K.A. Brueckner, see Walter Sullivan, New York Times, Jan. 13 (1980).

    Google Scholar 

  56. H. Hora, Atomkernenergie 40, 289 (1982).

    Google Scholar 

  57. M.P. Goldsworthy, and L.G. Kemeny, Light Ion Beam Hybrid Reactor (Univ. New South Wales, Report 1982).

    Google Scholar 

  58. B.W. Boreham, and H. Hora, Phys. Rev. Letters 42, 776 (1979).

    Article  ADS  Google Scholar 

  59. C. Joshi, H.A. Baldis, Phys. Rev. A25, 2440 (1982).

    ADS  Google Scholar 

  60. J.H. Nuckolls, Phys. Today 35, No. 9, 24 (1982).

    Article  Google Scholar 

  61. T. Yabe, and K. Nishihara, Res. Report, Inst. Plasma Phys., Nagoya Univ., IPP-J-235 (1975).

    Google Scholar 

  62. H. Azechi, N. Myanaga, S. Sakabe, T. Yamanaka, and C. Yamanaka, Jap. J. Appl. Phys. 20, L477 (1981).

    Article  ADS  Google Scholar 

  63. H. Hora, R. Castillo, R.G. Clark, E.L. Kane, V.F. Lawrence, R.D.C. Miller, M.F. Nicholson-Florence, M.M. Novak, P.S. Ray, J.R. Shepanski, and A.T. Tsivinsky, Plasma Physics and Controlled Nuclear Fusion Research 1978 (IAEA, Vienna, 1979), Vol. 3, p. 237.

    Google Scholar 

  64. P.S. Ray, and H. Hora, Nucl. Fusion, 16, 535 (1976).

    Article  ADS  Google Scholar 

  65. G.H. Miley, Report High-Energy Fusion-Product Energy-Loss Measurements, Univ. Illinois, Fusion Studies (1982).

    Google Scholar 

  66. R. Hofstadter, IAEA Committee Meeting on Inertial Confinement, Osaka, 1979, Advances in Inertial Confinement, C. Yamanaka ed. (ILE, Osaka, 1980) p. 180.

    Google Scholar 

  67. P.S. Ray, Ph.D. Thesis, Univ. New South Wales, 1977.

    Google Scholar 

  68. J. Stepanek in Laser Interaction and Related Plasma Phenomena, H. Schwarz et al. eds. (Plenum, New York, 1981) Vol. 5, p. 342.

    Google Scholar 

  69. J.H. Nuckolls, IAEA Committee Meeting on Inertial Confinement, San Francisco, Febr. 1978.

    Google Scholar 

  70. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1962) p. 513; M.P. Goldsworthy, H. Hora, and D.A. Jones (unpublished).

    Google Scholar 

  71. K.I. Golden, Laser and Part. Beams 1, No. 1 (1983);

    Article  ADS  Google Scholar 

  72. S. Yamaguchi, S. Kawata, K. Niu, and H. Murakami, Proc. Topical Seminar on Particle Beam Applications to Fusion Research, Inst. Plasma Phys. Nagoya, (1981) Vol. I, p. 129.

    Google Scholar 

  73. R.M. Kulsrud, H.P. Fürth, E.J. Valeo, and M. Goldhaber, Phys. Rev. Letters 49, 1248 (1982).

    Article  ADS  Google Scholar 

  74. B.W. Statt, and A.J. Berlinski, Phys. Rev. Lett. 45, 2105 (1980).

    Article  ADS  Google Scholar 

  75. L Wolfenstein, Phys. Rev. 75, 1664 (1949).

    Article  ADS  MATH  Google Scholar 

  76. R.E. Kidder, Nucl. Fusion 14, 797 (1975).

    Article  ADS  Google Scholar 

  77. P.S. Ray, and H. Hora, Z. Naturforsch. 32A, 538 (1977).

    ADS  Google Scholar 

  78. R. McNally (private comm., Oak Ridge, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Nobel Laureate N.G. Basov on his 60th Birthday, 14.12.1982.

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Cicchitelli, L. et al. (1984). Absorption, Double Layers, and Dynamics at Laser-Plasma Interaction and Pellet Fusion Gains With Reheat. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics