Skip to main content

Abstract

In the past several years there have been significant advances and accomplishments in the field of Inertial Confinement Fusion (ICF) research which are directly attributable to an active experimental program supported by the development and applications of sophisticated and specialized diagnostics instruments and techniques. Descriptions and discussions of many of these can be found in the referenced papers and reports(1–4) and references cited therein. The continued development of high temporal-and spatial-resolution diagnostics, although with a somewhat different technical emphasis than previously, is essential for maintaining progress in ICF. With the generation of inertial fusion drivers now becoming available progress toward higher density compression of fusion fuel will be attained at the expense of temperature, and consequently emissions from the targets will be limited. At the same time since the targets are being driven to higher density they are more opaque to the low-to-moderate energy x-rays (up to a few keV) and particles (alpha particles, protons, and knock-on charged particles) that have been utilized for diagnosing target performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.W. Coleman, Diagnostics for Fusion Experiments, Proceedings of the Course Varenna, Sept. 1978, Pergamon Press (1979) p.483.

    Google Scholar 

  2. D.T. Attwood, IEEE Journal of Quantum Electronics QE-14, (1978) p. 909.

    Article  ADS  Google Scholar 

  3. H.G. Ahlstrom, Physics of Laser Fusion, Vol II; Diag. of Expts. on Laser Fusion Targets at LLNL, UCRL-53106 (1982).

    Book  Google Scholar 

  4. Lawrence Livermore National Laboratory Laser Fusion Program Annual Reports, 1974–1982. UCRL 50021–74, -75, -76, -78, -79, -80.

    Google Scholar 

  5. V.W. Slivinsky, et al. Phys. Rev. Lett. 35, pp 1083–1085, Oct. 20, 1975.

    Article  ADS  Google Scholar 

  6. V.W. Slivinsky, et al. App. Phys. Lett. 30, 355 (1977)

    Article  Google Scholar 

  7. N.M. Ceglio and L.W. Coleman, Phys. Rev. Lett. 39, pp 20–24, July 4, 1977.

    Article  ADS  Google Scholar 

  8. V.W. Slivinsky, et al. Jour. App. Phys. 49, p 1106. 1978.

    Article  ADS  Google Scholar 

  9. F.J. Mayer and W.B. Rensel, Jour. App. Phys. 47, p. 1491, 1976.

    Article  ADS  Google Scholar 

  10. E.M. Campbell, et al. Bull. Am. Phys. Soc. 22, p. 1113, 1977.

    Google Scholar 

  11. S. Skupsky and S. Kacenjar, Jour. Appl. Phys. 52, 2608, 1981.

    Article  ADS  Google Scholar 

  12. S. Kacenjar, et al. Phys. Rev. Lett. 49, 463, (1982).

    Article  ADS  Google Scholar 

  13. R.A. Lerche, et al. App. Phys. Lett. 31, 10 (1977).

    Article  Google Scholar 

  14. S.M. Lane, N.M. Ceglio, LLNL, private communication.

    Google Scholar 

  15. J.M. Auerbach, D.S. Bailey, S.S. Glaros, L.N. Koppel, Y.L. Pan, L.M. Richards, V.W. Slivinsky, and J.J. Thomson, “Neon Spectral Line Broadening as a Diagnostic for Compressed Laser Fusion Targets,” J. App. Phys. 50B, 5478 (1979).

    Article  ADS  Google Scholar 

  16. B. Yaakobi, D. Steel, E. Thorsos, A. Hauer, and B. Perry, “Direct Measurement of Compression of Laser-Imploded Targets Using X-Ray Spectroscopy,” Phys. Rev. Lett. 39, 1526 (1977).

    Article  ADS  Google Scholar 

  17. M.H. Key, J.G. Lunney, J.M. Ward, R.G. Evans, and P.T. Rumsby, “Plasma Parameters in Laser Imploded Targets from Space-Resolved X-Ray Spectroscopy,” J. Phys. B 12(1), L 213 (1979).

    Article  ADS  Google Scholar 

  18. K.B. Mitchell, D.B. Van Hulsteyn, G.H. McCall, and P. Lee, “Compression Measurements of Neon-Seeded Glass Microballoons Irradiated by Co2-Laser Light,” Phys. Rev. Lett 42, 232 (1978).

    Article  ADS  Google Scholar 

  19. P. Kirkpatrick and A.V. Baez J. Opt. Soc. 38, 766 (1948).

    Article  ADS  Google Scholar 

  20. H. Wolter, Ann. Phys. 10, 94 (1952).

    Article  MATH  Google Scholar 

  21. M.J. Boyle and H. Ahlstrom, Rev. Sci. Instr. 49, 76 (1978)

    Article  Google Scholar 

  22. See articles and references therein in Low Energy X-Ray Diagnostics — 1981, D.T. Attwood and B.L. Henke, Eds. American Inst. of Phys. New York (1981).

    Google Scholar 

  23. N.M. Ceglio and J.T. Larsen, Phys. Rev. Lett. 44, 579 (1980).

    Article  ADS  Google Scholar 

  24. N.M. Ceglio, D.T. Attwood, and J.T. Larsen, Phys. Rev. A., 25, 2351 (1982).

    Article  ADS  Google Scholar 

  25. H.G. Ahlstrom, L.W. Coleman, F. Rienecker, Jr., and V.W. Slivinsky, J. Opt. Soc. Ann. 68, 1731 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Coleman, L.W. (1984). ICF Diagnostics. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7332-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7332-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7334-0

  • Online ISBN: 978-1-4615-7332-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics