Skip to main content

Neurons and Glia: Separation Techniques and Biochemical Interrelationships

  • Chapter
Structural Neurochemistry

Abstract

In recent years it has become evident that, because of the individuation of specific cells within the central nervous system (CNS) at the physiological, functional, and structural level, their biochemistry is likely to differ in certain critical aspects, too. Thus, it has become necessary to devise techniques to study biochemical variables within individual cells or cell classes. While both neurons and glia certainly differ among themselves biochemically as well as functionally, and the physiological role of different glial subclasses, Oligodendroglia, astrocytes, and microglia, has been extensively studied,(1) so far technical sophistication has scarcely proceeded beyond the point of separating the two major classes, neurons and glia, and examining some of their interrelationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reviews

  • R. Galambos (ed.), Glial cells, Neurosci. Res. Bull. II(6):1–64 (1964).

    Google Scholar 

  • H. Hydén, in The Cell (J. Brachet and A. E. Mirsky, eds.), Vol. IV, pp. 215–325, Academic Press, New York (1960).

    Google Scholar 

  • S. W. Kuffler and J. G. Nicholls, The physiology of neuroglia cells, Ergeb. Physiol. 57:1–90 (1966).

    Article  PubMed  CAS  Google Scholar 

  • S. P. R. Rose, in Applied Neurochemistry (A. Davison and J. Dobbing, eds.), pp. 332–355, Blackwells, Oxford (1968).

    Google Scholar 

  • W. F. Windle (ed.), Biology of Neuroglia, Charles C. Thomas, Springfield, Illinois (1958).

    Google Scholar 

References

  1. R. Galambos (ed.), Glial cells, Neurosci. Res. Bull. II(6):1–64 (1964).

    Google Scholar 

  2. G. Lehrer and H. Maker, Isolated cells, in Handbook of Neurochemistry, Vol. V (A. Lajtha, ed.), Chapter 12, Plenum Press, New York, in preparation.

    Google Scholar 

  3. E. Giacobini, Chemistry of isolated invertebrate neurons, inHandbook of Neurochemistry (A. Lajtha, ed.), Vol. II, pp. 195–239, Plenum Press, New York (1969).

    Google Scholar 

  4. C. Rappaport, Further studies on the disassociation of adult mouse tissues, Proc. Soc. Exptl. Biol Med. 121:1016–1021 (1966).

    CAS  Google Scholar 

  5. M. Satake and S. Abe, Preparation and characterisation of nerve cell perikaryon from rat cerebral cortex, J.Biochem. (Tokyo) 59:72–75 (1966).

    CAS  Google Scholar 

  6. S. P. R. Rose, Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active, neuronal and glial cells, Biochem. J. 102:33–43 (1967).

    PubMed  CAS  Google Scholar 

  7. S. R. Korey, in Biology of the Neuroglia (W. F. Windle, ed.), pp. 203–217, Charles C. Thomas, Springfield, Illinois (1958).

    Google Scholar 

  8. B. I. Roots and P. V. Johnston, Neurons of ox brain nuclei: Their isolation and appearance by light and electron microscopy, J.Ultrastruct. Res. 10:350–361 (1964).

    Article  PubMed  CAS  Google Scholar 

  9. V. Bocci, Enzyme and metabolic properties of isolated neurones, Nature 212:826–827 (1966).

    Article  CAS  Google Scholar 

  10. T. C. Johnson and M. W. Luttges, The effects of maturation on in vitro protein synthesis by mouse brain cells, J. Neurochem. 13:545–552 (1966).

    Article  PubMed  CAS  Google Scholar 

  11. L. Freysz, R. Bieth, C. Judes, M. Sesenbrenner, M. Jacob, and P. Mandel, J. Neurochem. Distribution quantitative des divers phospholipides dans les neurones et les cellules gliales isolés du cortex cérébral de rat adulte, 15:307–315 (1968).

    Article  PubMed  CAS  Google Scholar 

  12. E. Giacobini, in Morphological Correlates of Neural Activity (M. M. Cohen and R. S. Snyder, eds.), pp. 15–29, Harper & Row, New York (1964).

    Google Scholar 

  13. S. P. R. Rose, Some properties of isolated neuronal cell fractions, J. Neurochem. (1969), in press.

    Google Scholar 

  14. H. F. Bradford and S. P. R. Rose, Ionic accumulation and membrane properties of enriched preparations of neurons and glia from mammalian cerebral cortex, J. Neurochem. 14:373–375 (1967).

    Article  PubMed  CAS  Google Scholar 

  15. H. Hillman and H. Hydén, Membrane potentials in isolated neurons in vitro from Deiter’s nucleus of rabbit, J.Physiol. 177:398–410 (1965).

    PubMed  CAS  Google Scholar 

  16. B. Tiplady and S. P. R. Rose, unpublished results.

    Google Scholar 

  17. S. P. R. Rose, Amino acid metabolism in isolated neuronal and glial cells, Biochem. J. 102:21P (1967).

    Google Scholar 

  18. S. P. R. Rose, Glucose and amino acid metabolism in isolated neuronal and glial cell fractions in vitro,J. Neurochem. 15:1415–1429 (1968).

    Article  PubMed  CAS  Google Scholar 

  19. H. Hydén, in The Cell (J. Brachet and A. E. Mirsky, eds.), Vol. IV, pp. 215–325, Academic Press, New York (1960).

    Google Scholar 

  20. H. Hydén and A. Pigon, A cytophysiological study of the functional relationships between oligodendroglial cells and nerve cells of Deiter’s nucleus, J. Neurochem. 6:57–72 (1960).

    Article  PubMed  Google Scholar 

  21. H. Hydén and E. Egyházi, Nuclear RNA changes of nerve cells during a learning experiment in rats, Proc. Natl. Acad. Sci. 48:1366–1372 (1962).

    Article  PubMed  Google Scholar 

  22. H. Hydén and E. Egyházi, Glial RNA changes during a learning experiment in rats, Proc. Natl. Acad. Sci. 49:618–624 (1963).

    Article  PubMed  Google Scholar 

  23. J. Jarlstedt, in Macromolecules and the Function of the Neuron (Z. Lodin and S. P. R. Rose, eds.), pp. 321–333, Excerpta Medica, Amsterdam (1968).

    Google Scholar 

  24. H. Hydén and B. McEwen, A glial protein specific for the nervous system, Proc. Natl. Acad. Sci. 55:354–358 (1966).

    Article  PubMed  Google Scholar 

  25. A. N. Davison, M. L. Cuzner, N. C. Banik, and J. Oxberry, Myelinogenesis in the rat brain, Nature 212:1373–1374 (1966).

    Article  PubMed  CAS  Google Scholar 

  26. L. Freysz and M. Sensenbrenner, Proc. First Meeting Intern. Soc. Neurochem., Strasbourg, 1967.

    Google Scholar 

  27. R. L. Friede, Topographic Brain Chemistry, Academic Press, New York (1966).

    Google Scholar 

  28. H. H. Hess and A. Pope, Intralaminar distribution of cytochrome oxidase activity in human frontal isocortex, J.Neurochem. 5:207–217 (1958).

    Article  Google Scholar 

  29. H. Hydén and P. W. Lange, Rhythmic enzyme changes in neurons and glia during sleep, Science 149:654–656 (1965).

    Article  PubMed  Google Scholar 

  30. J. G. Salway, M. Kai, and J. N. Hawthorne, Triphosphoinositide Phosphomonoesterase in nerve cell bodies, neuroglia and subcellular fractions from whole rat brain, J. Neurochem. 14:1013–1025 (1967).

    Article  PubMed  CAS  Google Scholar 

  31. J. Altman and G. D. Das, Autoradiographic and histological studies of postnatal neurogenesis, J. Comp. Neurol. 126:337–390 (1966).

    Article  PubMed  CAS  Google Scholar 

  32. W. E. Watson, An autoradiographic study of the incorporation of nucleic acid precursors by neurons and glia during nerve stimulation, J.Physiol. 180:754–765 (1965).

    PubMed  CAS  Google Scholar 

  33. P. Volpe and A. Giuditta, Kinetics of RNA labelling in fractions enriched with neuroglia and neurons, Nature 216:154 (1967).

    Article  PubMed  CAS  Google Scholar 

  34. L. Hertz, Neuroglial localisation of potassium and sodium effects on respiration in brain, J. Neurochem. 13:1373–1387 (1966).

    Article  PubMed  CAS  Google Scholar 

  35. M. H. Epstein and J. S. O’Connor, Respiration of single cortical neurons and of surrounding neuropile, J.Neurochem. 12:389–395 (1965).

    Article  PubMed  CAS  Google Scholar 

  36. S. R. Korey and M. Orchen, Relative respiration of neuronal and glial cells, J. Neurochem. 3:277–285 (1959).

    Article  PubMed  CAS  Google Scholar 

  37. H. H. Hess, in Regional Neurochemistry (S. Kety and L. Elkes, eds.), pp. 200–212, Pergamon Press, Oxford (1961).

    Google Scholar 

  38. O. H. Lowry, N. R. Roberts, K. Y. Leiner, M. L. Wu, A. L. Farr, and R. W. Albers, The quantitative histochemistry of brain. III. Ammons horn, J.Biol. Chem. 207:39–49 (1954).

    PubMed  CAS  Google Scholar 

  39. A. Hamberger, Differences between isolated neuronal and vascular glia with respect to respiratory activity, Acta Physiol. Scand. 58: Suppl. 203, 1–67 (1963).

    CAS  Google Scholar 

  40. D. Garfinkel, A simulation study of the metabolism and compartmentation in brain of glutamate, aspartate, the Krebs cycle and related metabolites, J. Biol. Chem. 241:3918–3929 (1966).

    PubMed  CAS  Google Scholar 

  41. L. G. Abood, R. W. Gerard, J. Banks, and R. D. Tschirgi, Substrate and enzyme distribution in cells and cell fractions of the nervous system, Am. J. Physiol. 168:728–738 (1952).

    PubMed  CAS  Google Scholar 

  42. H. Pappius, Water spaces, in Handbook of Neurochemistry (A. Lajtha, ed.), Vol. II, pp. 1–10, Plenum Press, New York (1969).

    Google Scholar 

  43. S. W. Kuffler and J. G. Nicholls, The physiology of neuroglia cells, Ergeh. Physiol. 57:1–90 (1966).

    Article  CAS  Google Scholar 

  44. J. E. Edström, in Macromolecules and the Function of the Neuron (Z. Lodin and S. P. R. Rose, eds.), p. 331, Excerpta Medica, Amsterdam (1968).

    Google Scholar 

  45. E. de Robertis, in Nerve as Tissue (K. Rodahl and B. Issekutz, eds.), pp. 88–115, Hoeber, New York (1966).

    Google Scholar 

  46. M. E. Fewster, A. B. Scheibel, and J. F. Mead, The preparation of isolated glial cells from rat and bovine white matter, Brain Res. 6:401–408 (1967).

    Article  PubMed  CAS  Google Scholar 

  47. M. E. Fewster and J. F. Mead, Fatty acid and fatty aldehyde composition of glial cell lipids isolated from bovine white matter, J.Neurochem. 15:1303–1312 (1968).

    Article  PubMed  CAS  Google Scholar 

  48. A. L. Flangas and R. E. Bowman, Neuronal perikarya of rat brain isolated by zonal centrifugation, Science 161:1025–1027 (1968).

    Article  PubMed  CAS  Google Scholar 

  49. J. E. Cremer, P. V. Johnston, B. I. Roots and A. J. Trevor, Heterogeneity of brain fractions containing neuronal and glial cells, J. Neurochem. 15:1361–1370 (1968).

    Article  PubMed  CAS  Google Scholar 

  50. R. K. Margolis, A. Heller, and R. Y. Moore, Effects of changes in cellular composition following neuronal degeneration on amino acids in the brain, Brain Res. 11:19–31 (1968).

    Article  PubMed  CAS  Google Scholar 

  51. S. P. R. Rose, Isolated brain cell fractions and the Waelsch effect, FEBS Abstracts (1969), p. 182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press, New York

About this chapter

Cite this chapter

Rose, S.P.R. (1969). Neurons and Glia: Separation Techniques and Biochemical Interrelationships. In: Lajtha, A. (eds) Structural Neurochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7157-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7157-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7159-9

  • Online ISBN: 978-1-4615-7157-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics