Skip to main content

Photon Detectors for Confocal Microscopy

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

The goal of confocal microscopy is to obtain better image quality than that achieved in conventional light microscopy by examining each point in an object plane in the absence of light scattered from neighboring points. In this respect confocal microscopy differs from conventional brightfield microscopy where the intent is to view an object under uniform field illumination. The detector in the disk-scanning confocal microscope of Petran, Hadravsky, Egger, & Galambos (1968), is the human eye, a highly sophisticated instrument that is simple to use. The eye is attractive as a detector in terms of its quantum efficiency, the number and size of detector elements, the high degree of parallelism, and the higher order processing that results in perception of an image. Any confocal microscope that projects points in the object plane coherently onto conjugate points in the image plane can employ this detector. If the scanning is rapid enough, a stable full-field image will be perceived. As a detector, however, the eye is less than perfect in reconstructing images if the scanning rate is too slow, or when the scanning is arranged so that all points in the object plane are sequentially projected back onto a single point in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, R. G. W., Jones, R., Rarity, J. G. & Ridley, K. D. (1987): Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements. 2: Active Quenching. Applied Optics, 26–2, 2383–2389.

    Article  Google Scholar 

  • Brown, R. G. W., Ridley, K. D. & Rarity, J. G. (1986): Characterization of Silicon Avalanche Photodiodes for Photon Correlation Measurements. 1. Passive Quenching. Applied Optics, 25–22, 4122–4126.

    Article  Google Scholar 

  • Boyle, W. S. & Smith, G. E. (1970): Charge Coupled Semiconductor Devices. Bell System Technical Journal 49, 587–593.

    Google Scholar 

  • Burgess, R. E. (1956): The Statistics of Charge Carrier Fluctuations in Semiconductors. Proceedings of the Physical Society, B69, 1020–1027.

    Google Scholar 

  • Coutures, J. L. & Boucharlat, G. (1988): A 2 × 2048 Pixel Bilinear CCD Array for Spectroscopy (TH 7832 CDZ). Advances in Electronics and Electron Physics, 74, 173–179.

    Article  CAS  Google Scholar 

  • Einstein, A. (1905): Ãœber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17, 132–148.

    Article  CAS  Google Scholar 

  • Fairchild. (1987): CCD Imaging and Signal Processing Catalog and Applications Handbook. Fairchild Weston Systems Inc. CCD Imaging Division, Sunnyvale, CA.

    Google Scholar 

  • Goldstein, S. (1989): A No-Moving-Parts Video Rate Laser Beam Scanning Type 2 Confocal Reflected/Transmission Microscope. Journal of Microscopy, 153–2, RP1–RP2.

    Google Scholar 

  • Hier, R. G., Zheng, W., Beaver, E. A., Mcllwain, C. E. & Schmidt, G. W. (1988): Development of a CCD-Digicon Detector System. Advances in Electronics and Electron Physics, 74, 55–67.

    Article  Google Scholar 

  • Inoué, S. (1986): Video Microscopy. Plenum Press, New York & London. pp 584.

    Google Scholar 

  • Jones, R., Oliver, C. J. & Pike, E. R. (1971): Experimental and Theoretical Comparison of Photon-counting and Current Measurements of Light Intensity. Applied Optics, 10, 1673–1680.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, T. Jr. (1948): On Probability Generating Functions. American Journal of Physics, 16, 285–289.

    Article  Google Scholar 

  • Kittel, C. (1986): Introduction to Solid State Physics, 6th ed. John Wiley & Sons, New York. pp 646.

    Google Scholar 

  • Kume, H., Koyama, K., Nakatsugawa, K., Suzuki, S. & Fatlowitz, D. (1986): Ultrafast Micro Channel Plate Photomultipliers. Applied Optics, 27–6, 1170–1178.

    Google Scholar 

  • Lacaita, A., Cova, S. & Ghioni, M. (1988): Four-hundred-picosecond Single-photon Timing with Commercially Available Avalanche Photodiodes. Review of Scientific Instruments, 59–7, 1115–1121.

    Article  Google Scholar 

  • Mackay, C. D. (1988): Cooled CCD Systems for Biomedical and Other Applications. Advances in Electronics and Electron Physics, 74, 129–133.

    Article  Google Scholar 

  • McMullan, D. (1988): Image Recording in Electron Microscopy. Advances in Electronics and Electron Physics, 74, 147–156.

    Article  CAS  Google Scholar 

  • Mathur, D. P., Mclntyre, R. J. & Webb P. P. (1970): A New Geranium Photodiode with Extended Long-Wavelength Response. Applied Optics, 9–8, 1842–1847.

    Article  Google Scholar 

  • Petran, M., Hadravsky, M., Egger, M. D. & Galambos, R. (1968): Journal of the Optical Society of America, 58, 661–664.

    Article  Google Scholar 

  • Prescott, J. R. (1966): A Statistical Model for Photomultiplier Single-electron Statistics. Nuclear Instruments and Methods, 39, 173 179.

    Google Scholar 

  • Putley, E. H. (1977): Thermal Detectors. In Topics in Applied Physics, 19: Optical and Infrared Detectors. Ed: R. J. Keyes. Springer-Verlag, Berlin, pp 71–100.

    Google Scholar 

  • RCA. (1980): Photomultiplier Handbook. RCA Solid State Division. Lancaster, PA.

    Google Scholar 

  • Robben, F. (1971): Noise in the Measurement of Light with Photo-multipliers. Applied Optics, 10–4, 776–796.

    Article  Google Scholar 

  • Schwartz, M. (1970): Information Transmission, Modulation, and Noise, 2nd ed. McGraw-Hill, New York. pp 672.

    Google Scholar 

  • Seib, D. H. & Aukerman L. W. (1973): Photodetectors for the 0.1 to 1.0 mm Spectral Region. Advances in Electronics and Electron Physics, 34, 95–221.

    Article  CAS  Google Scholar 

  • Siliconix. (1986): Small-signal FET Data Book. Siliconix Inc. Santa Clara, CA.

    Google Scholar 

  • Sharpless, W. M. (1970): Evaluation of a Specially Designed GaAs Schottky-Barrier Photodiode Using 6328-u Radiation Modulated at 4 GHz. Applied Optics, 9–2, 489–494.

    Article  Google Scholar 

  • Sommer, A. H. (1968): Photoemissive Materials. John Wiley & Sons, New York. pp 255.

    Google Scholar 

  • Van der Ziel, A. (1959): Fluctuation Phenomena in Semi-conductors. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Art, J. (1990). Photon Detectors for Confocal Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7133-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7133-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7135-3

  • Online ISBN: 978-1-4615-7133-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics