Skip to main content

Chemically Pumped Electronic Transition Lasers

  • Chapter
Gas Flow and Chemical Lasers

Abstract

For a number of years we have been examining the ability to partition the chemical reaction energy directly into electronic transitions. The obvious advantage with this approach is that energy, which comes basically from chemistry, is partitioned directly into electronically excited states rather than going through an electrical power generation step with its associated inefficiencies. The disadvantage of such pumping schemes is that the excitation energy is limited to that of the chemical bond, 3 to 4 ev. Thus, unless multiple collisions are invoked, only electronic states below 4 ev could be pumped by such energy partitioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. G. Derwent and B. A. Thrush, Trans. Faraday Soc., 53; 162 (1972) and references within

    Google Scholar 

  2. D. F. Muller, R. H. Young, P. L. Houston, and J. R. Wiesenfeld, Applied Physics Letters, 38;404 (1981) and references within

    Google Scholar 

  3. P. Alsing, G. Simmons and S. Davis (Air Force Weapons Laboratory), in publication (1982)

    Google Scholar 

  4. R. Heidner, C. E. Gardner, G. I. Segal and T. M. El-Sayed, submitted to J. Phys Chem, (1982)

    Google Scholar 

  5. H. Lilenfeld, McDonald Douglas Research Labs, unpublished work (1982)

    Google Scholar 

  6. D. F. Muller and P. L. Houston, J. Phys Chem, 85; 3563 (1981)

    Article  Google Scholar 

  7. J. M. Herbelin and N. Cohen, Chem Phys Letters, 20; 605 (1973)

    Article  ADS  Google Scholar 

  8. C. T. Cheah and M. A. A. Clyne, Journal of Photochemistry, 15; 21 (1981)

    Article  Google Scholar 

  9. A. T. Pritt, Jr. and R. D. Coombe (Air Force Weapons Lab), TR-81-2111 (1981) and Int J.Chem Kinetics, 12; 741 (1980)

    Google Scholar 

  10. J. M. Herbelin, M. A. Kwok and D. J. Spenser, J. Appl Phys, 49; 3750 (1978)

    Article  ADS  Google Scholar 

  11. S. J. Davis and L. Hanko, Appl Phys Lett, 37; 692 (1980)

    Article  ADS  Google Scholar 

  12. P. D. Whitefield, R. F. Shea and S. J. Davis, submitted to J. Chem Phys (1982)

    Google Scholar 

  13. P. D. Whitefield and S. J. Davis, Chem Phys Lett, 83; 44 (1981)

    Article  ADS  Google Scholar 

  14. T. Trickl and J. Wanner, J. Chem Phys, 74; 11 (1981)

    Article  Google Scholar 

  15. J. Valentini, M. J. Coggiola and Y. T. Lee, Int J. Chem Kinetics, 8;605 (1978) and references within

    Google Scholar 

  16. R. D. Coombe and R. K. Horne, J. Phys Chem, 83; 2470 (1979)

    Google Scholar 

  17. M. Diegelman, K. Tbhla, F. Rebentrost and K. L. Kompa, J. Chem Phys, 73; 1233 (1982)

    Article  ADS  Google Scholar 

  18. A. T. Pritt and F. J. Wodarczyk, Rockwell International Science Center, private communication (1982)

    Google Scholar 

  19. A. T. Pritt, D. Patel and R. D. Coombe, J. Mol Spec, 87; 401 (1981)

    Article  ADS  Google Scholar 

  20. W. Hack and O. Horie, Chem Phys Letters, 82; 327 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Avizonis, P.V. (1984). Chemically Pumped Electronic Transition Lasers. In: Onorato, M. (eds) Gas Flow and Chemical Lasers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7067-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7067-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7069-1

  • Online ISBN: 978-1-4615-7067-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics