Skip to main content

The Evolutionary Ecology of Drosophila

  • Chapter
Evolutionary Biology

Abstract

In this review I have attempted to summarize a number of topics with which I am familiar that have significance for the field of evolutionary ecology. Since a good deal of this work includes laboratory studies, the following section provides a detailed description of the ecology of Drosophila (usually melanogaster) in the laboratory environment. This is followed by a section on the population dynamics of Drosophila, with particular attention paid to sources of bias that are inherent in certain experimental techniques. The next section considers the mechanisms and evolution of intra- and interspecific competition. This is followed by a section examining tradeoffs and correlations in Drosophila life-history traits and the consequences of density-dependent natural selection. The last section summarizes a rapidly growing literature on the habitat and oviposition preference of Drosophila. Several recent reviews touch upon areas of the ecology and evolution of Drosophila that I will not address (Parsons, 1980, 1981; Barker and Starmer, 1982). In this review I have attempted to develop a critical review of certain major topics and, I hope, unify certain disparate observations rather than be comprehensive in my citations. To all those whose work I have failed to cite I offer my apologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, P., 1976, Limiting similarity and the form of the competition coefficient, Theor. Popul. Biol. 8: 355–375.

    Google Scholar 

  • Alpatov, W. W., 1932, Egg production in Drosophila melanogaster and some factors which influence it, J. Exp. Zool. 63: 85–111.

    Google Scholar 

  • Alvarez, G., and Fontdevila, A., 1981, Effect of the singed locus on the egg production curve of Drosophila melanogaster, Can. J. Genet. Cytol. 23: 327–336.

    PubMed  CAS  Google Scholar 

  • Anderson, W. W., and Arnold, J., 1983, Density-regulated selection with genotypic interactions, Am. Nat. 121: 649–655.

    Google Scholar 

  • Asmussen, M. A., 1983, Density-dependent selection incorporating intraspecific competition. II. A diploid model, Genetics 103: 335–350.

    PubMed  CAS  Google Scholar 

  • Atkinson, W. D., 1979, A field investigation of larval competition in domestic Drosophila, J. Anim. Ecol. 48: 91–102.

    Google Scholar 

  • Atkinson, W. D., and Miller, J. A., 1980, Lack of habitat choice in a natural population of Drosophila subobscura, Heredity 44: 193–199.

    Google Scholar 

  • Ayala, F. J., 1965a, Evolution of fitness in experimental populations of Drosophila serrata, Science 150: 903–905.

    PubMed  CAS  Google Scholar 

  • Ayala, F. J., 1965b, Relative fitness of populations of Drosophila serrata and Drosophila birchii, Genetics 51: 527–544.

    PubMed  CAS  Google Scholar 

  • Ayala, F. J., 1966, Reversals of dominance in competing species of Drosophila, Am. Nat. 100: 81–83.

    Google Scholar 

  • Ayala, F. J., 1968a, Genotype, environment, and population numbers, Science 162: 1453–1459.

    PubMed  CAS  Google Scholar 

  • Ayala, F. J., 19686, An inexpensive and versatile population cage, Drosophila Information Service 43: 185.

    Google Scholar 

  • Ayala, F. J., 1969, Evolution of fitness. IV. Genetic evolution of interspecific competitive ability in Drosophila, Genetics 61: 737–747.

    PubMed  CAS  Google Scholar 

  • Ayala, F. J., 1971, Competition between strains of Drosophila willistoni and D. pseudoobscura, Experientia 27: 343.

    PubMed  Google Scholar 

  • Ayala, F. J., Gilpin, M. E., and Ehrenfeld, J. G., 1973, Competition between species: Theoretical models and experimental tests, Theor. Popul. Biol. 4: 331–356.

    PubMed  CAS  Google Scholar 

  • Bakker, K., 1961, An analysis of factors which determine success in competition for food among larvae of Drosophila melanogaster, Arch. Neerl. Zool. 14:200–281.

    Google Scholar 

  • Bakker, K., 1969, Selection for rate of growth and its influence on competitive ability of larvae of Drosophila melanogaster, Neth. J. Zool. 19: 541–595.

    Google Scholar 

  • Barclay, H. J., and Gregory, P. T., 1981, An experimental test of models predicting life-history characteristics, Am. Nat. 117: 944–961.

    Google Scholar 

  • Barclay, H. J., and Gregory, P. T., 1982, An experimental test of life history evolution using Drosophila melanogaster and Hyla regilla, Am. Nat. 120: 26–40.

    Google Scholar 

  • Barker, J. S. F., 1971, Ecological differences and competitive interaction between Drosophila melanogaster and Drosophila simulans in small laboratory populations, Oecologia 8: 134–156.

    Google Scholar 

  • Barker, J. S. F., and Podger, R. N., 1970, Interspecific competition between Drosophila melanogaster and Drosophila simulans: Effects of larval density on viability, development period and adult body weight, Ecology 51: 170–189.

    Google Scholar 

  • Barker, J. S. F., and Starmer, W. T., eds., 1982, Ecological Genetics and Evolution: The Cactus—Yeast—Drosophila Model System. Academic Press, New York.

    Google Scholar 

  • Barker, J. S. F., Parker, G. J., Toll, G. L., and Widders, P. R., 1981a, Attraction of Drosophila buzzatii and D. aldrichi to species of yeasts isolated from their natural environment. I. Laboratory experiments, Aust. J. Biol. Sci. 34: 593–612.

    Google Scholar 

  • Barker, J. S. F., Toll, G. L., East, P. D., and Widders, P. R., 1981b, Attraction of Drosophila buzzatii and D. aldrichi to species of yeasts isolated from their natural environment. II. Field experiments, Aust. J. Biol. Sci. 34: 613–624.

    Google Scholar 

  • Bierbaum, T. J., and Ayala, F. J., 1986, The coevolution of interspecific competitors: An experimental test in Drosophila, manuscript.

    Google Scholar 

  • Bierbaum, T. J., Mueller, L. D., and Ayala, F. J., 1986, Density-dependent evolution of life history characteristics in Drosophila melanogaster, manuscript.

    Google Scholar 

  • Bodenheimer, F. S., 1938, Problems of Animal Ecology, London.

    Google Scholar 

  • Brncic, D., 1966, Ecological and cytogenetic studies of Drosophila flavopilosa, a neotropical species living in Cestrum flowers, Evolution 20: 16–29.

    Google Scholar 

  • Bush, G. L., 1974, The mechanism of sympatric host race formation in the true fruit flies (Tephritidae), in: Genetic Mechanisms of Speciation in Insects ( M. J. D. White, ed.), pp. 3–23, Australian and New Zealand Book Co., Sydney.

    Google Scholar 

  • Buzzati-Traverso, A. A., 1955, Evolutionary changes in components of fitness and other polygenic traits in Drosophila melanogaster populations, Heredity 9: 153–186.

    Google Scholar 

  • Caligari, P. D. S., 1980, Competitive interactions in Drosophila melanogaster, Heredity 45: 219–231.

    PubMed  CAS  Google Scholar 

  • Carson, H. L., Knapp, E. P., and Phaff, H. J., 1956, Studies on the ecology of Drosophila in the Yosemite region of California. III. The yeast flora of the natural breeding sites of some species of Drosophila, Ecology 37: 538–544.

    Google Scholar 

  • Charlesworth, B., 1971, Selection in density-regulated populations, Ecology 52: 469–474.

    Google Scholar 

  • Charlesworth, B., 1980, Evolution in Age-Structured Populations, Cambridge University Press, Cambridge.

    Google Scholar 

  • Chiang, H. C., and Hodson, A. C., 1950, An analytical study of population growth in Drosophila melanogaster, Ecol. Monogr. 20: 173–206.

    Google Scholar 

  • Christiansen, F. B., and Loeschcke, V., 1980, Evolution and intraspecific exploitative competition. I. One-locus theory for small additive gene effects, Theor. Popul. Biol. 18: 297–313.

    Google Scholar 

  • Clark, A., 1979, The effects of interspecific competition on the dynamics of a polymorphism in an experimental population of Drosophila melanogaster Genetics 92: 1315–1328.

    CAS  Google Scholar 

  • Clark, A. G., and Feldman, M. W., 1981a, Density-dependent fertility selection in experimental populations of Drosophila melanogaster, Genetics 98: 849–869.

    PubMed  CAS  Google Scholar 

  • Clark, A. G., and Feldman, M. W., 1981b, The estimation of epistasis in components of fitness in experimental populations of Drosophila melanogaster II. Assessment of meiotic drive, viability, fecundity and sexual selection, Heredity 46: 347–377.

    PubMed  CAS  Google Scholar 

  • Clarke, B., 1972, Density-dependent selection, Am. Nat. 106: 1–13.

    Google Scholar 

  • Connell, J. H., 1980, Diversity and the coevolution of competitors, or the ghost of competition past, Oikos 35: 131–138.

    Google Scholar 

  • Connor, E. F., and Simberloff, D., 1979, The assembly of species communities: Chance or competition, Ecology 60: 1132–1140.

    Google Scholar 

  • Da Cunha, A. B., Shehata, A. M. E., and de Oliveira, W., 1957, A study of the diets and nutritional preferences of tropical species of Drosophila, Ecology 38:98–106.

    Google Scholar 

  • Deakin, M. A. B., 1966, Sufficient conditions for genetic polymorphism, Am. Nat. 100: 690–692.

    Google Scholar 

  • De Jong, G., 1976, A model of competition for food. I. Frequency-dependent viabilities, Am. Nat. 121: 67–93.

    Google Scholar 

  • Del Solar, E., 1968, Selection for and against gregariousness in the choice of oviposition sites by Drosophila pseudoobscura, Genetics 58: 275–282.

    PubMed  Google Scholar 

  • Del Solar, E., and Palomino, H., 1966, Choice of oviposition in Drosophila melanogaster, Am. Nat. 100: 127–133.

    Google Scholar 

  • Dobzhansky, T., Cooper, D. M., Phaff, H. J., Knapp, E. P., and Carson, H. L., 1956, Studies on the ecology of Drosophila in the Yosemite region of California. IV. Differential attraction of species of Drosophila to different species of yeasts, Ecology 37: 544–550.

    Google Scholar 

  • Falconer, D. S., 1981, Introduction to Quantitative Genetics, 2nd ed., Longman, London.

    Google Scholar 

  • Fellows, D. P., and Heed, W. B., 1972, Factors affecting host plant selection in desert-adapted cactiphilic Drosophila, Ecology 53: 850–858.

    Google Scholar 

  • Futuyma, D. J., 1970, Variation in genetic response in laboratory populations of Drosophila, Am. Nat. 104: 239–252.

    Google Scholar 

  • Futuyma, D. J., and Mayer, G. C., 1980, Nonallopatric speciation in animals, Syst. Zool. 29: 254–271.

    Google Scholar 

  • Gadgil, M., and Bossert, W., 1970, Life historical consequences of natural selection, Am. Nat. 104: 1–24.

    Google Scholar 

  • Gadgil, M., and Solbrig, O. T., 1972, The concept of r-and K-selection: Evidence from wild flowers and some theoretical considerations, Am. Nat. 106: 14–31.

    Google Scholar 

  • Gale, J. S., 1964, Competition between three lines of Drosophila melanogaster, Heredity 19: 681–699.

    PubMed  CAS  Google Scholar 

  • Giesel, J. T., 1979, Genetic co-variation of survivorship and other fitness indices in Drosophila melanogaster, Exp. Gerontol. 14: 323–328.

    PubMed  CAS  Google Scholar 

  • Giesel, J. T., and Zettler, E. E., 1980, Genetic correlations of life historical parameters and certain fitness indicies in Drosophila melanogaster: r m , r s , diet breadth, Oecologia 47: 299–302.

    Google Scholar 

  • Giesel, J. T., Murphy, P. A., and Manlove, M. N., 1982a, The influence of temperature on genetic interrelationships of life history traits in a population of Drosophila melanogaster: What tangled data sets we weave, Am. Nat. 119: 464–479.

    Google Scholar 

  • Giesel, J. T., Murphy, P. A., and Manlove, M. N., 1982b, An investigation of the effects of temperature on the genetic organization of life history indices in three populations of Drosophila melanogaster, in: Evolution and Genetics of Life Histories ( H. Dingle and J. P. Hegmann, eds.), pp. 189–207, Springer, New York.

    Google Scholar 

  • Gilpin, M. E., 1974, Intraspecific competition between Drosophila larvae in serial transfer systems, Ecology 55: 1154–1159.

    Google Scholar 

  • Gilpin, M. E., and Ayala, F. J., 1973, Global models of growth and competition, Proc. Natl. Acad. Sci. USA 70: 3590–3593.

    PubMed  CAS  Google Scholar 

  • Goodman, D., 1979, Competitive hierarchies in laboratory Drosophila, Evolution 33: 207–219.

    Google Scholar 

  • Gowen, J. W., and Johnsen, L. E., 1946, Section on genetics and evolution on the mechanism of heterosis. I. Metabolic capacity of different races of Drosophila melanogaster for egg production, Am. Nat. 80: 149–179.

    PubMed  CAS  Google Scholar 

  • Grimaldi, D., and Jaenike, J., 1984, Competition in natural populations of mycophagous Drosophila, Ecology 65: 1113–1120.

    Google Scholar 

  • Guckenheimer, J., Oster, G., and Ipaktchi, 1977, The dynamics of density dependent population models, J. Math. Biol. 4: 101–147.

    Google Scholar 

  • Gupta, A. P., and Lewontin, R. C., 1982, A study of reaction norms in natural populations of Drosophila pseudoobscura, Evolution 36: 934–948.

    Google Scholar 

  • Haddon, M., 1982, Frequency dependent competitive success in an age-structured model, Am. Nat. 120: 405–410.

    Google Scholar 

  • Hassell, M., Lawton, J., and May, R. M., 1976, Pattern of dynamical behavior in single-species populations, J. Anim. Ecol. 45: 471–486.

    Google Scholar 

  • Hastings, A., Serradilla, J. M., and Ayala, F. J., 1981, Boundary-layer model for the population dynamics of single species, Proc. Natl. Acad. Sci. USA 78: 1972–1975.

    PubMed  CAS  Google Scholar 

  • Haymer, D. S., and Hartl, D. L., 1983, The experimental assessment of fitness in Drosophila. II. A comparison of competitive and noncompetitive measures, Genetics 104: 343–352.

    PubMed  CAS  Google Scholar 

  • Heckel, D., and Roughgarden, J., 1980, A species near its equilibrium size in a fluctuating environment can evolve a lower intrinsic rate of increase, Proc. Natl. Acad. Sci. USA 77: 7497–7500.

    PubMed  CAS  Google Scholar 

  • Heed, W. B., Starmer, W. T., Miranda, M., Miller, M. W., and Phaff, H. J., 1976, An analysis of the yeast flora associated with cactophilic Drosophila and their host plants in the Sonoran Desert and its relation to temperate and tropical associations, Ecology 57: 151–160.

    Google Scholar 

  • Hiraizumi, Y., 1961, Negative correlation between rate of development and female fertility in Drosophila melanogaster, Genetics 46: 615–624.

    PubMed  CAS  Google Scholar 

  • Hopkins, A. D., 1917, A discussion of C. G. Hewitt’s paper on “Insect Behavior,” J. Econ. Entomol. 10: 92–93.

    Google Scholar 

  • Iwasa, Y., and Teramoto, E., 1980, A criterion of life history evolution based on density dependent selection, J. Theor. Biol. 84: 545–566.

    PubMed  CAS  Google Scholar 

  • Jaenike, J., 1978, Host selection by mycophagous Drosophila, Ecology 59: 1286–1288.

    Google Scholar 

  • Jaenike, J., 1981, Criteria for ascertaining the existence of host races, Am. Nat. 117: 830–834.

    Google Scholar 

  • Jaenike, J., 1982, Environment modification of oviposition behavior in Drosophila, Am. Nat. 119: 784–802.

    Google Scholar 

  • Jaenike, J., 1983, Induction of host preference in Drosophila melanogaster, Oecologia 58: 320–325.

    Google Scholar 

  • Jaenike, J., 1985, Genetic and environmental determinants of food preference in Drosophila tripunctata, Evolution 39: 362–369.

    Google Scholar 

  • Jaenike, J., 1986, Intraspecific variation in food preference of Drosophila, Biol. J. Linn. Soc.,in press.

    Google Scholar 

  • Jaenike, J., and Grimaldi, D., 1983, Genetic variation for host preference within and among populations of Drosophila tripunctata, Evolution 37: 1023–1033.

    Google Scholar 

  • Jones, J. S., and Probert, R. F., 1980, Habitat selection maintains a deleterious allele in a heterogeneous environment, Nature 287: 632–633.

    Google Scholar 

  • Karlin, S., 1981, Classifications of selection—migration structures and conditions for a protected polymorphism, in: Evolutionary Biology, Vol. 14 ( M. K. Hecht, B. Wallace, and G. T. Prance, eds.), pp. 61–204, Plenum Press, New York.

    Google Scholar 

  • Kekié, V., Taylor, C. E., and Andjelkovié, M., 1980, Habitat choice and resource specialization by Drosophila subobscura, Genetika 12: 219–225.

    Google Scholar 

  • King, C. E., and Anderson, W. W., 1971, Age-specific selection. II. The interaction between r and K during population growth, Am. Nat. 105: 137–156.

    Google Scholar 

  • King, C. E., and Dawson, P. S., eds., 1983, Population Biology: Retrospect and Prospect, Columbia University Press, New York.

    Google Scholar 

  • Klaczko, L. B., Powell, J. R., and Taylor, C. E., 1983, Drosophila baits: Yeasts and species attracted, Oecologia 59: 411–413.

    Google Scholar 

  • Levene, H., 1953, Genetic equilibrium when more than one ecological niche is available, Am. Nat. 87: 331–333.

    Google Scholar 

  • Levins, R., 1966, The strategy of model building in population biology, Am. Sci. 54: 421–431.

    Google Scholar 

  • Lewontin, R. C., 1955, The effects of population density and composition on viability in Drosophila melanogaster, Evolution 9: 27–41.

    Google Scholar 

  • Lewontin, R. C., and Matsuo, Y., 1963, Interaction of genotypes determining viability in Drosophila busckii, Proc. Natl. Acad. Sci. USA 49: 270–278.

    PubMed  CAS  Google Scholar 

  • L’Heritier, P., and Teissier, G., 1933, Etude d’une population de Drosophiles en equilibre, C. R. Acad. Sci. Fr. 197: 1765–1767.

    Google Scholar 

  • Luckinbill, L. S., 1978, r -and k-selection in experimental populations of Escherichia coli, Science 202: 1201–1203.

    PubMed  CAS  Google Scholar 

  • MacArthur, R. H., 1962, Some generalized theorems of natural selection, Proc. Natl. Acad. Sci. USA 48: 1893–1897.

    PubMed  CAS  Google Scholar 

  • MacArthur, R. H., and Wilson, E. O., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton.

    Google Scholar 

  • Mather, K., and Caligari, P. D. S., 1981, Competitive interactions in Drosophila melanogaster. II. Measurement of competition, Heredity 46: 239–254.

    Google Scholar 

  • Mather, K., and Cooke, P., 1962, Differences in competitive ability between genotypes of Drosophila, Heredity 17: 381–407.

    Google Scholar 

  • May, R. M., 1974, Biological populations with non-overlapping generations: Stable points, stable cycles and chaos, Science 186: 645–647.

    PubMed  CAS  Google Scholar 

  • May, R. M., and Oster, G., 1976, Bifurcations and dynamic complexity in simple ecological models, Am. Nat. 110: 573–599.

    Google Scholar 

  • Maynard-Smith, J., 1966, Sympatric speciation, Am. Nat. 100: 637–650.

    Google Scholar 

  • Mayr, E., 1963, Animal Species and Evolution, Harvard University Press, Cambridge.

    Google Scholar 

  • McKenzie, J. A., and Parsons, P. A., 1972, Alcohol tolerance: An ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans, Oecologia 10: 373–388.

    Google Scholar 

  • Merrell, D. J., 1951, Interspecific competition between Drosophila funebris and Drosophila melanogaster, Am. Nat. 85: 159–169.

    Google Scholar 

  • Miller, R. S., 1964, Larval competition in Drosophila melanogaster and D. simulans, Ecology 45: 132–148.

    Google Scholar 

  • Moore, J. A., 1952a, Competition between Drosophila melanogaster and Drosophila simulans. II. The improvement of competitive ability through selection, Proc. Natl. Acad. Sci. USA 38: 813–817.

    PubMed  CAS  Google Scholar 

  • Moore, J. A., 1952b, Competition between Drosophila melanogaster and Drosophila simulans. I. Population cage experiments, Evolution 6: 407–420.

    Google Scholar 

  • Mourâo, C. A., Ayala, F. J., and Anderson, W. W., 1972, Darwinian fitness and adaptedness in experimental populations of Drosophila willistoni, Genetica 43: 552–574.

    PubMed  Google Scholar 

  • Mueller, L. D., 1979, Fitness and density dependence in Drosophila melanogaster, Ph. D. Thesis, University of California, Davis.

    Google Scholar 

  • Mueller, L. D., and Ayala, F. J., 1981a, Fitness and density dependent population growth in Drosophila melanogaster, Genetics 97: 667–677.

    PubMed  CAS  Google Scholar 

  • Mueller, L. D., and Ayala, F. J., 1981b, Dynamics of single-species population growth: Experimental and statistical analysis, Theor. Popul. Biol. 20: 101–117.

    Google Scholar 

  • Mueller, L. D., and Ayala, F. J., 1981c, Dynamics of single-species population growth: Stability or chaos? Ecology 62: 1148–1154.

    Google Scholar 

  • Mueller, L. D., and Ayala, F. J., 1981d, Trade-off between r-selection and K-selection in Drosophila populations, Proc. Natl. Acad. Sci. USA 78: 1303–1305.

    PubMed  CAS  Google Scholar 

  • Mueller, L. D., and Ayala, F. J., 1982, Population dynamics in the serial transfer system: Comments on Haddon’s model, Am. Nat. 120: 548–550.

    Google Scholar 

  • Murphy, P. A., Giesel, J. T., and Manlove, M. N., 1983. Temperature effects on life history variation in Drosophila simulans, Evolution 37: 1181–1192.

    Google Scholar 

  • Nogueg, R. M. 1977, Population size fluctuations in the evolution of experimental cultures of Drosophila subobscura, Evolution 31: 200–213.

    Google Scholar 

  • Nunney, L., 1983, Sex differences in larval competition in Drosophila melanogaster: The testing of a competition model and its relevance to frequency dependent selection, Am. Nat. 121: 67–93.

    Google Scholar 

  • Parsons, P. A., 1980, Isofemale strains and evolutionary strategies in natural populations, in: Evolutionary Biology, Vol. 13 ( M. K. Hecht, W. C. Steere, and B. Wallace, eds.), pp. 175–217, Plenum Press, New York.

    Google Scholar 

  • Parsons, P. A., 1981, Evolutionary ecology of Australian Drosophila, a species analysis in: Evolutionary Biology, Vol. 14 (M. K. Hecht and G. T. Prance, eds.), pp. 297–349, Plenum Press, New York.

    Google Scholar 

  • Pearl, R., 1927, The growth of populations, Q. Rev. Biol. 2: 532–548.

    Google Scholar 

  • Pearl, R., 1928, The Rate of Living, Knopf, New York.

    Google Scholar 

  • Pearl, R., 1932, The influence of density of population upon egg production in Drosophila melanogaster, J. Exp. Zool. 63: 57–83.

    Google Scholar 

  • Pearl, R., Miner, J. R., and Parker, S. L., 1927, Experimental studies on the duration of life. XI. Density of population and life duration in Drosophila, Am. Nat. 61: 289–317.

    Google Scholar 

  • Pianka, E. R., 1970, On r-and k-selection, Am. Nat. 104: 592–596.

    Google Scholar 

  • Pianka, E. R., 1972, r -and K selection or b and d selection? Am. Nat. 106: 581–588.

    Google Scholar 

  • Pimentel, D., Feinberg, E. H., Wood, P. W., and Hayes, J. T., 1965, Selection, spatial distribution and the co-existence of competing fly species, Am. Nat. 99: 97–109.

    Google Scholar 

  • Pomerantz, M. J., Thomas, W. R., and Gilpin, M. E., 1980, Asymmetries in population growth regulated by intraspecific competition: Empirical studies and model tests, Oecologia. 47: 311–322.

    Google Scholar 

  • Prout, T., 1980, Some relationships between density-independent and density-dependent population growth, in: Evolutionary Biology, Vol. 13 ( M. K. Hecht, W. C. Steere, and B. Wallace, eds.), pp. 1–68, Plenum Press, New York.

    Google Scholar 

  • Prout, T., 1985, The delayed effect on adult fertility of immature crowding: Population dynamics, Am. Nat.,in press.

    Google Scholar 

  • Pruzan-Hotchkiss, A., Perelle, I. B., Hotchkiss, F. H. C. and Ehrman, L., 1980, Altered competition between two reproductively isolated strains of Drosophila melanogaster, Evolution 34: 445–452.

    Google Scholar 

  • Richardson, R. H., and Johnston, J. S., 1975, Ecological specialization of Hawaiian Drosophila, Oecologia 21: 193–204.

    Google Scholar 

  • Richmond, R. C., and Gerking, J. L., 1979, Oviposition site preference in Drosophila, Behay. Genet. 9: 233–241.

    CAS  Google Scholar 

  • Robertson, F. W., 1957, Studies in quantitative inheritance. XI. Genetic and environemtnal correlation between body size and egg production in Drosophila melanogaster, J. Genet. 55: 428–443.

    Google Scholar 

  • Robertson, R. W., and Sang, F. H., 1944, The ecological determinants of population growth in a Drosophila culture, Proc. Roy. Soc. Lond. B 132: 258–291.

    Google Scholar 

  • Rose, M. R., 1984a, Laboratory evolution of postponed senescence in Drosophila melanogaster, Evolution 38: 516–526.

    Google Scholar 

  • Rose, M. R., 1984b, Genetic covariation in Drosophila life history: Untangling the data, Am. Nat. 123: 565–569.

    Google Scholar 

  • Rose, M. R., and Charlesworth, B., 1981a, Genetics of life history in Drosophila melanogaster. I. Sib. analysis of adult females, Genetics 97: 173–186.

    PubMed  CAS  Google Scholar 

  • Rose, M. R., and Charlesworth, B., 1981b, Genetics of life history in Drosophila melanogaster. II. Exploratory selection experiments, Genetics 97: 187–196.

    PubMed  CAS  Google Scholar 

  • Rose, M. R., Dorey, M. L., Coyle, A. M., and Service, P. M., 1984, The morphology of postponed senescence in Drosophila melanogaster, Can. J. Zool. 62: 1576–1580.

    Google Scholar 

  • Roughgarden, J., 1971, Density dependent natural selection, Ecology 52: 453–468.

    Google Scholar 

  • Roughgarden, J., 1976, Resource partitioning among competing species—A coevolutionary approach, Theor. Popul. Biol. 9: 388–424.

    PubMed  CAS  Google Scholar 

  • Roughgarden, J., 1979, Theory of Population Genetics and Evolutionary Ecology: An Introduction, MacMillan, New York.

    Google Scholar 

  • Rummel, J. D., and Roughgarden, J., 1983, Some differences between invasion-structured and coevolutionary-structured competitive communities: A preliminary theoretical analysis, Oikos 41: 477–486.

    Google Scholar 

  • Sang, J. H., 1949a, The ecological determinants of population growth in a Drosophila culture. III. Larval and pupal survival, Physiol. Zool. 22: 183–202.

    CAS  Google Scholar 

  • Sang, J. H., 1949b, The ecological determinants of population growth in a Drosophila culture. IV. The significance of successive batches of larvae, Physiol. Zool. 22: 202–210.

    CAS  Google Scholar 

  • Sang, J. H., 1949c, The ecological determinants of population growth in a Drosophila culture. V. The adult population count, Physiol. Zool. 22: 210–223.

    PubMed  CAS  Google Scholar 

  • Sang, J. H., 1949d, Population growth in Drosophila cultures, Biol. Rev.. 25: 188–219.

    Google Scholar 

  • Sang, J. H., McDonald, J. M., and Gordon, C., 1949, The ecological determinants of population growth in a Drosophila culture. VI. The total population count, Physiol. Zool. 22: 223–235.

    PubMed  CAS  Google Scholar 

  • Schaffer, W. M., 1983, The application of optimal control theory to the general life history problem, Am. Nat. 121: 418–431.

    Google Scholar 

  • Schoener, T. W., 1983, Field experiments on interspecific competition, Am. Nat. 122: 240–285.

    Google Scholar 

  • Seager, R. D., and Ayala, F. J., 1982, Chromosome interactions in Drosophila melanogaster. I. Viability studies, Genetics 102: 467–483.

    PubMed  CAS  Google Scholar 

  • Seaton, A. P. C., and Antonovics, J., 1967, Population inter-relationships. I. Evolution in mixtures of Drosophila mutants, Heredity 22: 19–33.

    PubMed  CAS  Google Scholar 

  • Shorrocks, B.,1970, Population fluctuations in the fruit fly (Drosophila melanogaster) maintained in the laboratory, J. Anim. Ecol. 39:229–253.

    Google Scholar 

  • Shorrocks, B., and Nigro, L., 1981, Microdistribution and habitat selection in Drosophila subobscura Collin, Biol. J. Linn. Soc. 16: 293–301.

    Google Scholar 

  • Simmons, M. J., Preston, C. R., and Engels, W. R., 1980, Pleiotropic effects on fitness of mutations affecting viability in Drosophila melanogaster, Genetics 94: 467–475.

    PubMed  CAS  Google Scholar 

  • Smith, F. E., 1963, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44: 651–663.

    Google Scholar 

  • Stalker, H. D., 1976, Chromosome studies in wild populations of D. melanogaster, Genetics 82: 323–347.

    PubMed  CAS  Google Scholar 

  • Starmer, W. T., Heed, W. B., Miranda, M., Miller, M. W., and Phaff, H. J., 1976, The ecology of yeast flora associated with cactophilic Drosophila and their host plants in the Sonoran Desert, Microbiol. Ecol. 3: 11–30.

    Google Scholar 

  • Starmer, W. T., Phaff, H. J., Miranda, M., Miller, M. W., and Heed, W. B., 1981, The yeast flora associated with the decaying stems of columnar cacti and Drosophila in North America, in: Evolutionary Biology, Vol. 14 ( M. K. Hecht, B. Wallace, G. T. Prance, eds.), pp. 269–295, Plenum Press, New York.

    Google Scholar 

  • Stearns, S. C., 1976, Life history tactics: A review of the ideas, Q. Rev. Biol. 51: 3–47.

    PubMed  CAS  Google Scholar 

  • Stearns, S. C., 1977, The evolution of life history traits: A critique of the theory and a review of the data, Annu. Rev. Ecol. Syst. 8: 145–171.

    Google Scholar 

  • Strong, D., Szyska, L., and Simberloff, D., 1979, Tests of community-wide character displacement against null hypothesis, Evolution 33: 897–913.

    Google Scholar 

  • Sulzbach, D. S., 1980, Selection for competitive ability: Negative results in Drosophila, Evolution 34: 431–436.

    Google Scholar 

  • Sulzbach, D. S., and Emlen, J. M., 1979, Evolution of competitive ability in mixtures of Drosophila melanogaster: Populations with an initial asymmetry, Evolution 33: 1138–1149.

    Google Scholar 

  • Takamura, T., 1980, Behavior genetics of choice of oviposition site in Drosophila melanogaster. II. Analysis of natural population, Jpn. J. Genet. 55: 91–97.

    Google Scholar 

  • Taylor, C. E., and Condra, C., 1980, r -and K-selection in Drosophila pseudoobscura, Evolution 34: 1183–1193.

    Google Scholar 

  • Taylor, C. E., and Powell, J. R., 1977, Microgeographic differentiation of chromosomal and enzyme polymorphisms in Drosophila persimilis, Genetics 85: 681–695.

    PubMed  CAS  Google Scholar 

  • Taylor, C. E., and Powell, J. R., 1978, Habitat choice in natural populations of Drosophila, Oecologia 37: 69–75.

    Google Scholar 

  • Taylor, H. M., Gourley, R. S., Lawrence, C. E., and Kaplan, R. S., 1974, Natural selection of life history attributes: An analytical approach, Theor. Popul. Biol. 5: 104–122.

    PubMed  CAS  Google Scholar 

  • Tempiel, B. L., Bonini, N., Dawson, D. R., and Quinn, W. G., 1983, Reward learning in normal and mutant Drosophila, Proc. Natl. Acad. Sci. USA 80: 1482–1486.

    Google Scholar 

  • Templeton, A. R., and Johnston, J. S., 1982, Life history evolution under pleiotropy and K-selection in a natural population of Drosophila mercatorum, in: Ecological Genetics and Evolution: The Cactus—Yeast—Drosophila Model System ( J. S. F. Barker and W. T. Starmer, eds.), pp. 225–239, Academic Press, New York.

    Google Scholar 

  • Thomas, W. R., Pomerantz, M. J. and Gilpin, M. E., 1980, Chaos, asymmetric growth and group selection for dynamical stability, Ecology 61: 1312–1320.

    Google Scholar 

  • Thorpe, W. H., 1945, The evolutionary significance of habitat selection, J. Anim. Ecol. 14: 67–70.

    Google Scholar 

  • Tracey, M. L., and Ayala, F. J., 1974, Genetic load in natural populations: Is it compatible with the hypothesis that many polymorphisms are maintained by natural selection? Genetics 77: 569–589.

    PubMed  CAS  Google Scholar 

  • Turelli, M., and Petry, D., 1980, Density-dependent selection in a random environment: An evolutionary process that can maintain stable population dynamics, Proc. Natl. Acad. Sci. USA 77: 7501–7505.

    PubMed  CAS  Google Scholar 

  • Turelli, M., Coyne, J. A., and Prout, T., 1984, Habitat and food choice in orchard populations of Drosophila, Biol. J. Linn. Soc. 22: 95–106.

    Google Scholar 

  • Wallace, B., 1970, Genetic Load, Prentice-Hall, Englewood Cliffs, New Jersey. Wallace, B., 1975, The biogeography of laboratory islands, Evolution 29: 622–635.

    Google Scholar 

  • White, M. J. D., 1978, Modes of Speciation, Freeman, San Francisco.

    Google Scholar 

  • Wijsman, E. M., 1984, The effect of mutagenesis on competitive ability in Drosophila, Evolution 38: 571–581.

    Google Scholar 

  • Wright, S., 1943, Isolation by distance, Genetics 28: 114–138.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Mueller, L.D. (1985). The Evolutionary Ecology of Drosophila . In: Hecht, M.K., Wallace, B., Prance, G.T. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6980-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6980-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6982-4

  • Online ISBN: 978-1-4615-6980-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics