Skip to main content

Detection of early ischemic damage by analysis of mitochondrial function in skinned fibers

  • Chapter
Detection of Mitochondrial Diseases

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 21))

  • 323 Accesses

Abstract

The skinned fibers technique was applied for studies of the effects of global acute ischemia (1 h at 37° C) and long time (15 h) hypothermic (4° C) preservation of isolated rat hearts under different conditions (immersion or low-flow perfusion) on mitochondrial function in the cells in vivo. Skinned fibers were obtained by using saponin for permeabilization of the sarcolemma in separated fiber bundles cut from left ventricle. The experimental protocol of the respiration rate determination included a cytochrome c test to check the intactness of the outer mitochondrial membrane. The apparent Km for ADP and the effect of creatine on the mitochondrial activity were also evaluated in these permeabilized fibers, taken from different groups of hearts. The preservation of low-flow perfused hearts resulted only in a slight decrease of creatine (20 mM) stimulated respiration at 0.1 mM ADP. The fibers from ischemic hearts or from hearts preserved by immersion showed a decrease of the apparent Km for ADP, and a complete loss of the stimulatory effect of creatine. In these fibers, we could observe that the outer mitochondrial membrane was damaged. In conclusion, the results of this study show that assessment of mitochondrial parameters sensitive to organelles swelling — intactness of outer membrane and functionally coupled creatine kinase reaction — are the most sensitive indicators of early hypoxic or ischemic damage to mitochondria. Their determination in biopsy samples could be used for evaluation of the efficiency of the cardiac protection in heart surgery. (Mol Cell Biochem 174: 79–85, 1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scholte HR: The biochemical basis of mitochondrial diseases. J Bioenerg Biomembr 20: 161–191, 1988

    Article  PubMed  CAS  Google Scholar 

  2. Luft R: The development of mitochondrial medicine. Proc Natl Acad Sci USA 91: 8731–8738, 1994

    Article  PubMed  CAS  Google Scholar 

  3. Reimer KA, Jennings RB: Myocardial ischemia, hypoxia and infarction. In: HA Fozzard, RB Jennings, E Haber, AM Katz (eds). The Heart and Cardiovascular System, Scientific foundations, 2nd edn, New York: Raven Press, 1991, pp 1875–1973

    Google Scholar 

  4. Piper HM: Mitochondrial injury in the oxygen-depleted and reoxygenated myocardial cells. In: HM Piper (ed). Pathophysiology of Severe Ischemic Myocardial Injury, Dordrecht Kluwer Academic Publishers, 1990, pp 91–113

    Chapter  Google Scholar 

  5. Zuurbier CJ, Mast F, Elzinga G, Van Beck JHGM: Mitochondrial function is not decreased in stunned papillary muscle at 20° C. J Mol Cell Cardiol 29: 347–355, 1997

    Article  PubMed  CAS  Google Scholar 

  6. Sako EY, Kingsley-Hickman PB, From AHL, Foker JE, Ugurbil K: ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P-NMR. J Biol Chem 263: 10600–10607, 1988

    PubMed  CAS  Google Scholar 

  7. Zimmer SD, Ugurbil K, Michurski SP, Mohanakrishman P, Ulstadt V, Foker JE, From AHL: Alterations in oxydative function and respiratory regulation in the post-ischemic myocardium. J Biol Chem 264: 12402–12411, 1989

    PubMed  CAS  Google Scholar 

  8. Jennings RB, Herdson PB, Sommers HM: Structural and functional abnormalities in mitochondria isolated from ischemic dog myocardium. Lab Invest 20: 548–557, 1969

    PubMed  CAS  Google Scholar 

  9. Jennings RB, Kaltenbach JP, Sommers HM: Mitochondrial metabolism in ischemic injury. Arch Pathol 84: 15–19, 1967

    PubMed  CAS  Google Scholar 

  10. Lochner A, Opie LH, Owen P, Kotze JCN, Bruyneel K, Gevers W: Oxidative phosphorylation in infarcting baboon and dog myocardium: effects of mitochondrial isolation and incubation media. J Mol Cell Cardiol 7: 203–217, 1975

    Article  PubMed  CAS  Google Scholar 

  11. Regitz V, Paulson DJ, Hodach RJ, Little SE, Schaper W, Shug AL: Mitochondrial damage during myocardial ischemia. Basic Res Cardiol 79: 207–217, 1984

    Article  PubMed  CAS  Google Scholar 

  12. Rouslin W: Mitochondrial complexes I, II, III and IV in myocardial ischemia and autolysis. Am J Physiol 244: H743–H748, 1983

    PubMed  CAS  Google Scholar 

  13. Asimakis GK, Conti VR: Myocardial ischemia: correlation of mitochondrial adenine nucleotide and respiratory function. J Mol Cell Cardiol 16:439–448, 1984

    Article  PubMed  CAS  Google Scholar 

  14. Jennings RB, Reimer KA: Lethal myocardial ischemic injury. Am J Pathol 102:241–255, 1981

    PubMed  CAS  Google Scholar 

  15. Piper HM, Noll T, Siegmund B: Mitochondrial function in the oxygen depleted and reoxygenated myocardial cell. Cardiovasc Res 28: 1–15, 1994

    Article  PubMed  CAS  Google Scholar 

  16. Veksler VI, Kuznetsov AV, Sharov VG, Kapelko VI, Saks VA: Mitochondrial respiratory parameters in cardiac tissue: a novel method for assessment by using saponin-skinned fibers. Biochim Biophys Acta 892: 191–196, 1987

    Article  PubMed  CAS  Google Scholar 

  17. Saks VA, Kapelko VI, Kupriyanov VV, Kuznetsov AV, Lakomkin VL, Veksler VI, Sharov VG, Javadov SA, Seppet EK, Kairane C: Quantitative evaluation of relationship between cardiac energy metabolism and post-ischemic recovery of contractile function. J Mol Cell Cardiol 21: 67–78, 1989

    Article  PubMed  Google Scholar 

  18. Saks VA, Vasileva EV, Belikova YuO, Kuznetsov AV, Lyapina S, Petrova L, Perov NA: Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. Biochim Biophys Acta 1144: 134–148, 1993

    Article  PubMed  CAS  Google Scholar 

  19. Saks VA, Belikova YuO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG: Phosphocreatine pathway for intracellular energy transport: ADP diffusion and cardiomyopathy. Am J Physiol 261,Suppl 1: 30–38, 1991

    PubMed  CAS  Google Scholar 

  20. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova YuO, Kuznetsov AV: Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration — a synthesis. Mol Cell Biochem 133/134: 155–192, 1994

    Article  Google Scholar 

  21. Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova YuO, Kesvatera T, Tiivel T: Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27: 625–645, 1995

    Article  PubMed  CAS  Google Scholar 

  22. Veksler V, Ventura-Clapier R: Ischaemic metabolic factors — high inorganic phosphate and acidosis — modulate mitochondrial creatine kinase functional activity in skinned cardiac fibers. J Mol Cell Cardiol 26: 335–339, 1994

    Article  PubMed  CAS  Google Scholar 

  23. Klingenberg M, Pfaff E: Structural and functional compartmentation in mitochondria. In: JM Tager, S Papa, Quagliariello, EC Slater (eds). Amsterdam, Elsevier Publishing Company, 1966, pp 180–201

    Google Scholar 

  24. Vial C, Font B, Goldschmidt D, Gautheron DC: Dissociation and reassociation of creatine kinase with heart mitochondria: pH and phosphate dependence. Biochem Biophys Res Commun 88: 1352–1359, 1979

    Article  PubMed  CAS  Google Scholar 

  25. Soboll S, Conrad A, Keller M, Hebish S: The role of the mitochondrial creatine kinase system for myocardial function during ischemia and reperfusion. Biochim Biophys Acta 1100: 27–32, 1992

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kay, L., Rossi, A., Saks, V. (1997). Detection of early ischemic damage by analysis of mitochondrial function in skinned fibers. In: Gellerich, F.N., Zierz, S. (eds) Detection of Mitochondrial Diseases. Developments in Molecular and Cellular Biochemistry, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6111-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6111-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7800-6

  • Online ISBN: 978-1-4615-6111-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics