Skip to main content

The Iron Responsive Element (IRE), the Iron Regulatory Protein (IRP), and Cytosolic Aconitase

Posttranscriptional Regulation of Mammalian Iron Metabolism

  • Chapter
Metal Ions in Gene Regulation

Abstract

The fundamental role of iron in the maintenance of human health has been apparent for many years. The requirement for iron in growth and development of organisms from bacteria to humans arises because it is an essential component of proteins that perform redox and nonredox roles in a number of cellular functions. Given that iron is one of the most abundant, chemically versatile, and reactive elements in our environment, it is not surprising that nature has made extensive use of its properties. However, there are two significant problems regarding the use of iron in biological systems: its low solubility, particularly as Fe(III), and its toxicity when present in excess because of its ability to induce formation of damaging free radicals. Organisms have developed a variety of mechanisms to acquire and make use of iron for a large number of necessary functions while simultaneously reducing the incidence of inappropriate effects of this micronutrient on cell viability. Recent investigations of the regulation of iron homeostasis in mammals have identified two unique proteins: the iron regulatory proteins or IRPs,1 which act as central regulators of iron utilization. IRPs appear to represent the only members of the aconitase family of proteins that function in gene regulation (Frishman and Hentze 1996; Rouault et al. 1992). IRPs are cytosolic RNA binding proteins that modulate synthesis of proteins that function in the uptake, storage, and utilization of iron by binding to their mRNAs, thereby affecting their translation or stability. Posttranslational regulation of IRP function by iron and phosphorylation, with subsequent effects on iron metabolism, are topics of current inquiry to those interested in posttranscriptional gene regulation, iron-sulfur protein structure and function, and regulation of iron homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams M. L., I. Ostapiuk, and J. A. Grasso. 1989. The effects of inhibition of heme synthesis on the intracellular localization of iron in rat reticulocytes. Biochim. Biophys. Acta 1012:243–253.

    Article  PubMed  CAS  Google Scholar 

  • Aisen, P. 1991. Ferritin receptors and the role of ferritin in iron transport. Targeted Diagnosis and Therapy 4:339–354.

    PubMed  CAS  Google Scholar 

  • Aisen P., G. Cohen, and J. O. Kang. 1990. Iron toxicosis. Int. Rev. Exp. Pathol. 31:1–46.

    PubMed  CAS  Google Scholar 

  • Andreesen R., J. Osterholz, H. Bodermann, J. Bross, U. Costabel, and G. W. Löhr. 1984. Expression of transferrin receptors and intracellular ferritin during terminal differentiation of human monocytes. Blut 49:195–202.

    Article  PubMed  CAS  Google Scholar 

  • Andrews S. C., A. Treffry, and P. M. Harrison. 1988. Siderosomal ferritin: The missing link between ferritin and haemosiderin. Biochem. J. 245:439–

    Google Scholar 

  • Aziz N., and H. N. Munro. 1986. Both subunits of rat liver ferritin are regulated at a translational level by iron induction. Nucl. Acids. Res. 14:915–9

    Article  PubMed  CAS  Google Scholar 

  • Aziz N., and H. N. Munro. 1987. Iron regulates ferritin mRNA translation through a segment of its 5’ untranslated region. Proc. Natl. Acad. Sci. U.S.A. 84:8478–8482.

    Article  PubMed  CAS  Google Scholar 

  • Babior, B. M. 1984. The respiratory burst of phagocytes. J. Clin. Invest. 73:599–601.

    Article  PubMed  CAS  Google Scholar 

  • Bacon B. R., and R. S. Britton. 1990. The pathology of iron overload: A free radicalmediated process? Hepatology 11:127–

    Article  PubMed  CAS  Google Scholar 

  • Bali P. K., O. Zak, and P. Aisen. 1991. A new role for the transferrin receptor in the release of iron from transferrin. Biochemistry 30: 324–328.

    Article  PubMed  CAS  Google Scholar 

  • Balla G., H. S. Jacob, J. Balla, M. Rosenberg, K. Nath, K. Apple, J. W. Eaton, and G. M. Vercellotti. 1992. Ferritin: A cytoprotective antioxidant stratagem of endothelium. J. Biol. Chem. 267:18148–18153.

    PubMed  CAS  Google Scholar 

  • Balla J., H. S. Jacob, G. Balla, K. Nath, J. W. Eaton, and G. M. Vercellotti. 1993. Endothelial cell heme uptake from heme proteins: Induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. U.S.A. 90:9285–9289.

    Article  PubMed  CAS  Google Scholar 

  • Barton H. A., R. S. Eisenstein, A. B. Bomford, and H. N. Munro. 1990. Determinants of the interaction of the iron regulatory element binding protein with its binding site in rat L-ferritin mRNA. J. Biol. Chem. 265:7000–7008.

    PubMed  CAS  Google Scholar 

  • Basilion J. P., M. C. Kennedy, H. Beinert, C. M. Massinople, R. D. Klausner, and T. A. Rouault. 1994 a. Overexpression of iron-responsive element binding protein and its analytical characterization as the RNA-binding form, devoid of an iron-sulfur cluster. Arch. Biochem. Biophys. 311: 517–522.

    Article  PubMed  CAS  Google Scholar 

  • Basilion J. P., T. A. Rouault, C. M. Massinople, R. D. Klausner, and W. H. Burgess. 1994 b. The iron-responsive element-binding protein: Localization of the RNA-binding site to the aconitase active-site cleft. Proc. Natl. Acad. Sci. U.S.A. 91: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Baynes R. D., and T. H. Bothwell. 1990. Iron deficiency. Ann. Rev. Nutr. 10: 133–148.

    Article  CAS  Google Scholar 

  • Beaumont C., P. Leneuve, I. Devaux, J-Y. Scoazec, M. Berthier, M-N. Loiseau, B. Grandchamp, and D. Bonneau. 1995. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nature Genetics 11: 444–446.

    Article  PubMed  CAS  Google Scholar 

  • Beaumont C., A. Seyhan, A. K. Yachou, B. Grandchamp, and R. Jones. 1994. Mouse ferritin H subunit gene. Functional analysis of the promoter and identification of an upstream regulatory element active in erythroid cells. J. Biol. Chem. 269: 20281–20288.

    PubMed  CAS  Google Scholar 

  • Beckman J. S., T. W. Beckman, J. Chan, P. A. Marshall, and B. A. Freeman. 1990. Apparent hydroxy1 radical formation by peroxynitrite: Implications for endothelial injury from nitric oxide and super-oxide. Proc. Natl. Acad. Sci. U.S.A. s 87: 1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Beinert H., M. H. Emptage, J.-L. Dreyer, R. A. Scott, J. E. Hahn, K. O. Hodgson, and A. J. Thomson. 1983. Iron-sulfur stoichiometry and structure of iron-sulfur clusters in three-iron proteins: Evidence for [3Fe-4S] clusters. Proc. Natl. Acad. Sci. U.S.A. 80: 393–396.

    Article  PubMed  CAS  Google Scholar 

  • Beinert H., and M. C. Kennedy. 1989. Engineering of protein bound iron-sulfur clusters: A tool for the study of protein and cluster chemistry and mechanism of iron-sulfur enzymes. Eur. J. Biochem. 186: 5–15.

    Article  PubMed  CAS  Google Scholar 

  • Beinert H., and M. C. Kennedy. 1993. Aconitase, a two-faced protein: Enzyme and iron regulatory factor. FASEB J. 7: 1442–1449.

    PubMed  CAS  Google Scholar 

  • Beinert H., M. C. Kennedy, and C. D. Stout. 1996. Aconitase as iron-sulfur protein, enzyme, and iron-regulatory protein. Chem. Reviews. 96: 2335–2373.

    Article  CAS  Google Scholar 

  • Berger H. M., S. Mumby, and J. M. Gutteridge. 1995. Ferrous ions detected in ironoverloaded cord blood plasma from preterm and term babies: implications for oxidative stress. Free Radical Research. 22: 555–559.

    Article  PubMed  CAS  Google Scholar 

  • Bettany, A. J. E.,R. S. Eisenstein, and H. N. Munro. 1992. Mutagenesis of the iron regulatory element binding protein further defines a role for RNA secondary structure in the regulation of ferritin and TfR expression. J. Biol. Chem. 267:16531–16537.

    CAS  Google Scholar 

  • Bhasker C. R., G. Burgiel, B. Neupert, A. Emery-Goodman, L. C. Kühn, and B. K. May.1993. The putative iron-responsive element in the human erythroid 5-aminolevulinate synthase mRNA mediates translational control. J. Biol. Chem. 263: 12699–1

    Google Scholar 

  • Binder R., J. A. Horowitz, J. P. Basilion, D. M. Koeller, R. D. Klausner, and J. B. Harford. 1994. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 3’ UTR and does not involve poly(A) tail shortening. EMBO J. 13: 1969–1980.

    PubMed  CAS  Google Scholar 

  • Bomford A., C. Conlon-Hollingshead, and H. N. Munro. 1981. Adaptive response of rat tissue isoferritins to iron administration. J. Biol. Chem. 256: 948–955.

    PubMed  CAS  Google Scholar 

  • Bomford A. B., and H. N. Munro. 1985. Transferrin and its receptor: Their roles in cell function. Hepatology 5: 870–875.

    Article  PubMed  CAS  Google Scholar 

  • Bomford A., S. P. Young, and R. Williams. 1985. Release of iron from the two ironbinding sites of transferrin by cultured cells: Modulation by methylamine. Biochem. 24: 3472–3478.

    Article  CAS  Google Scholar 

  • Bonkovsky, H. L. 1991. Iron and the liver. Amer. J. Med. Sci. 301: 32–43.

    Article  PubMed  CAS  Google Scholar 

  • Bothwell, T. H. 1995. Overview and mechanisms of iron regualtion. Nutr. Rev. 53: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Bothwell T. H., R. W. Charlton, J. D. Cook, and C. A. Finch. 1979. Iron Metabolism in Man. Blackwell Scientific Publications, St. Louis.

    Google Scholar 

  • Bottomley S. S., L. C. Wolfe, and K. R. Bridges. 1985. Iron metabolism in K562 erythroleukemia cells. J. Biol. Chem. 260: 6811–6815.

    PubMed  CAS  Google Scholar 

  • Bouton, C, M. Raveau, and J.-C. Drapier. 1996. Modulation of iron regulatory protein functions. J. Biol Chem. 271: 2300–2306.

    Article  PubMed  CAS  Google Scholar 

  • Brown P. H., S. Daniels-McQueen, W. E. Walden, M. M. Patino, L. Gaffield, D. Bielser, and R. E. Thach. 1989. Requirements for the translational repression of ferritin transcripts in wheat germ extracts by a 90-kDa protein from rabbit liver. J. Biol. Chem. 264: 13383–13386.

    PubMed  CAS  Google Scholar 

  • Butt J., H-Y. Kim, J. P. Basilion, S. Cohen, K. Iwai, C. C. Philpott, S. Altschul, R. D. Klausner, and T. A. Rouault. 1996. Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. Proc. Natl. Acad. Sci. U.S.A. 93: 4345–4349.

    Article  PubMed  CAS  Google Scholar 

  • Cairo G., and A. Pietrangelo. 1994. Transferrin receptor gene expression during liver regeneration. J. Biol. Chem. 269: 6405–6409.

    PubMed  CAS  Google Scholar 

  • Cairo G., and A. Pietrangelo. 1995. Nitric-oxide-mediated activation of iron regulatory protein controls hepatic iron metabolism during acute inflammation. Eur. J. Biochem. 232: 358–363.

    Article  PubMed  CAS  Google Scholar 

  • Cairo G., L. Tacchini, G. Pogliaghi, E. Anzon, A. Tomasi, and A. Bernelli-Zazzera. 1995. Induction of ferritin synthesis by oxidative stress. J. Biol. Chem. 270: 700–703.

    Article  PubMed  CAS  Google Scholar 

  • Casey J. L., B. Di Jeso, K. Rao, R. D. Klausner, and J. B. Harford. 1988 a. Two genetic loci participate in the regulation by iron of the gene for the human transferrin receptor. Proc. Natl. Acad. Sci. U.S.A. 85: 1787–1791.

    Article  PubMed  CAS  Google Scholar 

  • Casey J. L., M. W. Hentze, D. M. Koeller, S. W. Caughman, T. A. Rouault, R. D. Klausner, and J. B. Harford. 1988 b. Iron-responsive elements: Regulatory RNA sequences that control mRNA levels and translation. Science 240: 924–928.

    Article  PubMed  CAS  Google Scholar 

  • Casey J. L., D. M. Koeller, V. C. Ramin, R. D. Klausner, and J. B. Harford. 1989. Iron regulation of transferrin receptor mRNA levels requires iron-responsive elements and a rapid turnover determinant in the 3’-untranslated region of the mRNA. EMBO J. 8: 3693–3699.

    PubMed  CAS  Google Scholar 

  • Castro L., M. Rodriguez, and R. Radi. 1994. Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J. Biol. Chem. 269: 29409–29415.

    PubMed  CAS  Google Scholar 

  • Caughman S. W., M. W. Hentze, T. A. Rouault, J. B. Harford, and R. D. Klausner. 1988. The iron-responsive element is the single element responsible for iron-dependent translational regulation of ferritin biosynthesis. J. Biol Chem. 263: 19048–19052.

    PubMed  CAS  Google Scholar 

  • Chazenbalk G. D., H. L. Wadsworth, D. Foti, and B. Rapoport. 1990. Thyrotropin and adenosine 3’5’-monophosphate stimulate the activity of the ferritin H-promoter. Molec. Endo. 4: 1117–1124.

    Article  CAS  Google Scholar 

  • Chen O. S., K. L. Schalinske, and R. S. Eisenstein. 1997. Dietary Iron Intake Modulates the Activity of Iron Regulatory Proteins (IRPs) and the Abundance of Ferritin and Mitochondrial Aconitase in Rat Liver. J. Nutrition 127: 238–248.

    CAS  Google Scholar 

  • Chou, C.-C, R. A. Gatti, M. L. Fuller, P. Concannon, A. Wong, S. Chada, R. C. Davis, and W. A. Salser. 1986. Structure and expression of ferritin genes in a human promyelocytic cell line that differentiates in vitro. Mol Cell. Biol. 6: 566–573.

    PubMed  CAS  Google Scholar 

  • Chu, L. L. H., and R. A. Fineberg. 1969. On the mechanism of iron-induced synthesis of apoferritin in HeLa cells. J. Biol. Chem. 244: 3847–3854.

    PubMed  CAS  Google Scholar 

  • Ciechanover A., A. L. Schwartz, A. Dautry-Varsta, and H. Lodish. 1983. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. J. Biol. Chem. 258: 9681–9689.

    PubMed  CAS  Google Scholar 

  • Cleland W. W., and M. M. Kreevoy. 1994. Low-barrier hydrogen bonds and enzymic catalysis. Science 264: 1887–1890.

    Article  PubMed  CAS  Google Scholar 

  • Coccia E. M., V. Profita, G. Fiorucci, G. Romeo, E. Affabris, U. Testa, M. W. Hentze, and A. Battistini. 1992. Modulation of ferritin H-chain expression in friend erythroleukemia cells: Transcriptional and translational regulation by hemin. Mol. Cell. Biol. 12: 3015–3022.

    PubMed  CAS  Google Scholar 

  • Collawn J. F., A. Lai, D. Domingo, M. Fitch, S. Hatton, and I. S. Trowbridge. 1993. YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis. J. Biol. Chem. 268: 21686–21692.

    PubMed  CAS  Google Scholar 

  • Collawn J. F., M. Stangel, L. A. Kühn, V. Esekogwu, S. Jing, I. S. Trowbridge, and J. A. Tainer. 1990. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63: 1061–1072.

    Article  PubMed  CAS  Google Scholar 

  • Conrad M. E., J. N. Umbreit, and E. G. Moore. 1993. Regulation of iron transport: Proteins involved in duodenal mucosal uptake and transport. J. Am. Coll. Nutr. 12: 720–728.

    PubMed  CAS  Google Scholar 

  • Conrad M. E., J. N. Umbreit, E. G. Moore, R. D. A. Peterson, and M. B. Jones. 1990. A newly identified iron-binding protein in duodenal mucosa of rats. J. Biol. Chem. 265: 5273–5279.

    PubMed  CAS  Google Scholar 

  • Cox L. A., and G. S. Adrian. 1993. Posttranscriptional regulation of chimeric transferrin genes by iron. Biochemistry 32: 4738–4745.

    Article  PubMed  CAS  Google Scholar 

  • Cox L. A., M. C. Kennedy, and G. S. Adrian. 1995. The 5’-untranslated region of human transferrin mRNA, which contains a putative iron-regulatory element, is bound by purified iron-regulatory protein in a sequence-specific manner. Biochem. Biophys. Res. Comm. 212: 925–932.

    Article  PubMed  CAS  Google Scholar 

  • Cox, T. C, M. J. Bawden, A. Martin, and B. K. May. 1991. Human erythroid 5-aminolevulinate synthase: Promoter analysis and identification of an IRE in the mRNA. EMBO J. 10: 1891–1902.

    PubMed  CAS  Google Scholar 

  • Cox, T. C, M. W. O’Donnell, P. Aisen, and I. London. 1985. Hemin inhibits internalization of transferrin by reticulocytes and promotes phosphorylation of the membrane transferrin receptor. Proc. Natl. Acad. Sci. U.S.A. 82: 5170–5174.

    Article  PubMed  CAS  Google Scholar 

  • Cox T. M., P. Ponka, and H. M. Schulman. 1990. Erythroid cell iron metabolism and heme synthesis. In Iron Transport and Storage, eds. P. Ponka, H. M. Schulman, and R. C. Woodworm, CRC Press, Boca Raton, FL, pp. 271–288.

    Google Scholar 

  • Crichton, R. R. 1991. Inorganic Biochemistry of Iron Metabolism. Ellis Horwood, New York.

    Google Scholar 

  • D’Souza-Schorey D., G. Li, M. I. Colombo, and P. D. Stahl. 1995. A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267: 1175–1177.

    Article  CAS  Google Scholar 

  • Dallman, P. R. 1986. Biochemical basis for the manifestations of iron deficiency. Ann. Rev. Nutr. 6: 13–40.

    Article  CAS  Google Scholar 

  • Dandekar T., R. Stripecke, N. K. Gray, B. Goossen, A. Constable, H. E. Johansson, and M. W. Hentze. 1991. Identification of a novel IRE in murine and human eALAS mRNA. EMBO J. 10: 1903–1909.

    PubMed  CAS  Google Scholar 

  • Dargemont, C, A. LeBivic, S. Rothenberger, B. Iacopetta, and L. C. Kühn. 1993. The internalization signal and the phosphorylation site of transferrin receptor are distinct from the main basolateral sorting information. EMBO J. 12: 1713–1721.

    PubMed  CAS  Google Scholar 

  • Dautry-Varsat A., A. Ciechanover, and H. F. Lodish. 1983. pH and the recycling of transferrin during receptor-mediated endocytosis. Proc. Natl. Acad. Sci. U.S.A. 80: 2258–2262.

    Article  PubMed  CAS  Google Scholar 

  • Davis B., P. Saltman, and S. Benson. 1962. The stability constants of iron-transferrin complex. Biochem. Biophys. Res. Comm. 8: 56–60.

    Article  PubMed  CAS  Google Scholar 

  • Davis R. J., M. Faucher, L. K. Racaniello, A. Carruthers, and M. P. Czech. 1987. Insulinlike growth factor I and epidermal growth factor regulate the expression of TfRs at the cell surface by distinct mechanisms. J. Biol. Chem. 262: 13126–13134.

    PubMed  CAS  Google Scholar 

  • Davis R. J., and H. Meisner. 1987 b. Regulation of transferrin receptor recycling by protein kinase C is independent of receptor phosphorylation at serine 24 in Swiss 3T3 fibroblasts. J. Biol. Chem. 262: 16041–16047.

    PubMed  CAS  Google Scholar 

  • DeRusso P. A., C. C. Philpott, K. Iwai, H. S. Mostowski, R. D. Klausner, and T. A. Rouault. 1995. Expression of a constitutive mutant of iron regulatory protein 1 abolishes iron homeostasis in mammalian cells. J. Biol. Chem. 270: 15451–15454.

    Article  PubMed  CAS  Google Scholar 

  • De Silva D. M., C. C. Askwith, and J. Kaplan. 1996. Molecular mechanisms of iron uptake in eukaryotes. Physiol. Rev. 76: 31–47.

    PubMed  CAS  Google Scholar 

  • Dickey L. F., S. Sreedharan, E. C. Theil, J. R. Didsbury, Y. H. Wang, and R. E. Kaufmann. 1987. Differences in the regulation of messenger RNA for housekeeping and specializedcell ferritin. J. Biol. Chem. 262: 7901–7907.

    PubMed  Google Scholar 

  • Dickey L. F., Y.-H. Wang, G. E. Shull, I. A. Wortmann III, and E. C. Theil. 1988. The importance of the 3’-untranslated region in the translational control of ferritin mRNA. J. Biol. Chem. 263: 3071–3074.

    PubMed  CAS  Google Scholar 

  • DiMascio P., M. E. Murphy, and H. Sies. 1991. Antioxidant defense systems: The role of carotenoids, tocopherols, and thiols. Amer. J. Clin. Nutr. 53: 194S–200S.

    CAS  Google Scholar 

  • Dix D. J., P.-N. Lin, Y. Kimata, and E. C. Theil. 1992. The iron regulatory region of ferritin mRNA is also a positive control element for iron-independent translation. Biochemistry 31: 2818–2822.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty J. J., W. A. Croft, and W. G. Hoekstra. 1981. Effects of ferrous chloride and iron-dextran on lipid peroxidation in vivo in vitamin E and selenium adequate and deficient rats. J. Nutr. 111: 1784–1796.

    PubMed  CAS  Google Scholar 

  • Drapier, J.-C., H. Hirling, J. Wietzerbin, P. Kaldy, and L. C. Kühn. 1993. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages. EMBO J. 12: 3643–3649.

    PubMed  CAS  Google Scholar 

  • Drysdale J. W., and H. N. Munro. 1965. Failure of actinomycin D to prevent induction of liver apoferritin after iron administration. Biochim. Biophys. Acta. 103: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Drysdale J. W., and H. N. Munro. 1966. Regulation of ferritin synthesis and turnover in rat liver. J. Biol. Chem. 241: 3630–3637.

    PubMed  CAS  Google Scholar 

  • Drysdale J. W., and H. N. Munro. 1970. Role of iron in the regulation of ferritin metabolism. Fed. Proc. 29: 1469–1473.

    PubMed  Google Scholar 

  • Drysdale J. W., E. Olafsdottir, and H. N. Munro. 1968. Effect of RNA depletion on ferritin induction in rat liver. J. Biol. Chem. 243: 552–555.

    PubMed  CAS  Google Scholar 

  • Eanes R. Z., and E. Kun. 1974. Inhibition of liver aconitase isozymes by (-)-erythrofluorocitrate. Mol. Pharmacol. 10: 130–139.

    PubMed  CAS  Google Scholar 

  • Eisenstein R. S., H. A. Barton, W. P. Pettingell, and A. B. Bomford. 1997. Isolation, characterization, and functional studies of rat liver iron regulatory protein 1. Arch. Biochem. Biophys. 343: 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein R. S., A. J. E. Bettany, and H. N. Munro. 1990. Regulation of ferritin gene expression. In Metal Ion Induced Regulation of Gene Expression, vol. 8. In Advances in Inorganic Biochemistry, eds.G. L. Eichorn and L. G. Marzilli, pp. 91–138. Elsevier, New York.

    Google Scholar 

  • Eisenstein R. S., D. G. Garcia-Mayol, W. P. Pettingell, and H. N. Munro. 1991. Regulation of ferritin and heme oxygenase synthesis by different forms of iron. Proc. Natl. Acad. Sci. U.S.A. 88: 688–692.

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein R. S., P. T. Tuazon, K. L. Schalinske, S. A. Anderson, and J. A. Traugh. 1993. Iron-responsive element binding protein: Phosphorylation by protein kinase C. J. Biol. Chem. 268: 27363–27370.

    PubMed  CAS  Google Scholar 

  • Emery-Goodman A., H. Hirling, L. Scarpellino, B. Henderson, and L. C. Kühn. 1993. Iron regulatory factor expressed from recombinant baculovirus: Conversion between the RNA-binding apoprotein and Fe-S cluster containing aconitase. Nucl. Acids. Res. 21: 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  • Emptage M. H., J.-L. Dreyer, M. C. Kennedy, and H. Beinert. 1983 a. Optical and EPR characterization of different species of active and inactive aconitase. J. Biol. Chem. 258: 11106–11111.

    PubMed  CAS  Google Scholar 

  • Emptage M. H., T. A. Kent, M. C. Kennedy, H. Beinert, and E. Münck. 1983 b.Mössbauer and EPR studies of activated aconitase: Development of a localized valence state at a subsite of the [4Fe-4S] cluster on binding of citrate. Proc. Natl. Acad. Sci U.S.A. 80: 4674–4678.

    Article  PubMed  CAS  Google Scholar 

  • Englard, S. 1960. Configurational considerations in relation to the mechanisms of the stereospecific enzymatic hydrations of fumarate and cis-aconitate. J. Biol. Chem. 235: 1510–1516.

    PubMed  CAS  Google Scholar 

  • Enns C. A., J. W. Larrick, H. Suomalainen, J. Schroder, and H. H. Sussman. 1983. Comigration and internalization of transferrin and its receptor on K562 cells. J. Cell. Biol. 97: 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Fairbanks, V. F. 1994. Iron in medicine and nutrition. In Modern Nutrition in Health and Disease, 8th edition, eds.M. E. Shils, J. A. Olson, and M. Shike. Lea and Febiger, Philadelphia, pp. 185–213.

    Google Scholar 

  • Frishman D., and M. W. Hentze. 1996. Conservation of aconitase residues revealed by multiple sequence analysis: Implications for structure/function relationships. Eur. J. Biochem. 239: 197–200.

    Article  PubMed  CAS  Google Scholar 

  • Gardner P. R., D.-D. Nguyen H., and C. W. White. 1994. Aconitase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and in rat lungs. Proc. Natl. Acad. Sci. U.S.A. 91: 12248–12252.

    Article  PubMed  CAS  Google Scholar 

  • Gawron O., A. J. Glaid III, and T. P. Fondy. 1961. Stereochemistry of Krebs’ cycle hydrations and related reactions. J. Am. Chem. Soc. 83: 3634–3640.

    Article  CAS  Google Scholar 

  • Girelli D., O. Olivieri, P. Gasparini, and R. Corrocher. 1996. Molecular basis for the hereditary hyperferritinemia-cataract Blood. 87: 4912–4913.

    PubMed  CAS  Google Scholar 

  • Gironés, N., E. Alvarez, A. Seth, I.-M. Lin, D. A. Latour, and R. J. Davis. 1991. Mutational analysis of the cytoplasmic tail of the human transferrin receptor. J. Biol. Chem. 266: 19006–19012.

    PubMed  Google Scholar 

  • Goossen B., S. W. Caughman, J. B. Harford, R. D. Klausner, and M. W. Hentze. 1990. Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position dependent in vivo. EMBO J. 9: 127–133.

    Google Scholar 

  • Granick, S. 1946. Protein apoferritin and ferritin in iron feeding and absorption. Science 103: 107.

    Article  CAS  Google Scholar 

  • Gray N. K., K. Pantopoulos, T. Dandekar, B. Ackrell, and M. W. Hentze. 1996. Translational regulation of mammalian and drosophila citric acid cycle enzymes via iron-responsive elements. Proc. Natl. Acad. Sci. USA. 93: 4925–4930.

    Article  PubMed  CAS  Google Scholar 

  • Gray N. K., and M. W. Hentze. 1994. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13: 3882–3891.

    PubMed  CAS  Google Scholar 

  • Gray N. K., S. Quick, B. Goossen, A. Constable, H. Hirling, L. C. Kühn, and M. W. Hentze. 1993. Recombinant iron-regulatory factor functions as an iron-responsive-element-binding protein, a translational repressor and an aconitase: A functional assay for translational repression and direct demonstration of the iron switch. Eur. J. Biochem. 218: 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, E. 1987. Iron in biological systems. In Iron and Infection, eds.J. J. Bullen and E. Griffiths. John Wiley and Sons, New York.

    Google Scholar 

  • Grootveld M., J. D. Bell, B. Halliwell, O. I. Aruoma, A. Bomford, and P. J. Sadler. 1989. Non-transferrin-bound iron in plasma or serum from patients with idiopathic hemochromatosis. J. Biol Chem. 264: 4417–

    PubMed  CAS  Google Scholar 

  • Guo B., F. M. Brown, J. D. Phillips, Y. Yu, and E. A. Leibold. 1995 a. Characterization and expression of iron regulatory protein 2 (IRP2). J. Biol. Chem. 270: 16529–16535.

    Article  PubMed  CAS  Google Scholar 

  • Guo B., J. D. Phillips, Y. Yu, and E. A. Leibold. 1995 b. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J. Biol. Chem. 270: 21645–21651.

    Article  PubMed  CAS  Google Scholar 

  • Guo B., Y. Yu, and E. A. Leibold. 1994. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J. Biol. Chem. 269: 24252–24260.

    PubMed  CAS  Google Scholar 

  • Gutteridge J. M., G. J. Quinlan, and T. W. Evans. 1994. Transient iron overload with bleomycin detectable iron in the plasma of patients with adult respiratory distress syndrome. Thorax. 49: 707–710.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge J. M., S. Mumby, M. Koizumi, and N. Taniguchi. 1996. “Free” iron in neonatal plasma activates aconitase: evidence for biologically reactive iron. Biochem. Biophys. Res. Comm. 229: 806–809.

    Article  PubMed  CAS  Google Scholar 

  • Haile D. J., M. W. Hentze, T. A. Rouault, J. B. Harford, and R. D. Klausner. 1989. Regulation of interaction of the IRE binding protein with iron-responsive RNA elements. Mol. Cell. Biol. 9: 5055–5061.

    PubMed  CAS  Google Scholar 

  • Haile D. J., T. A. Rouault, C. K. Tang, J. Chin, J. B. Harford, and R. D. Klausner. 1992 a. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: Role of the iron-sulfur cluster. Proc. Natl. Acad. Sci. U.S.A. 89: 7536–7540.

    Article  PubMed  CAS  Google Scholar 

  • Haile D. J., T. A. Rouault, J. B. Harford, M. C. Kennedy, G. A. Blondin, H. Beinert, and R. D. Klausner. 1992 b. Cellular regulation of the iron-responsive element binding protein: Disassembly of the cubane iron-sulfur cluster results in high-affinity RNA binding. Proc. Natl. Acad. Sci. U.S.A. 89: 11735–11739.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B. 1989. Oxidants and the CNS: Some fundamental questions. Acta. Neurol. Scand. 126: 23–33.

    Article  CAS  Google Scholar 

  • Halliwell B., and J. M. C. Gutteridge. 1986. Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts. Arch. Biochem. Biophys. 246: 501–514.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton T. A., T. G. Wada, and H. H. Sussman. 1979. Identification of transferrin receptors on the surface of human cultured cells. Proc. Natl. Acad. Sci U.S.A. 76: 6406–6410.

    Article  PubMed  CAS  Google Scholar 

  • Harrell C. M., A. R. McKenzie, M. M. Patino, W. E. Walden, and E. C. Theil. 1991. Ferritin mRNA: Interactions of iron regulatory element with translational regulator protein P-90 and the effect on base-paired flanking regions. Proc. Natl. Acad. Sci. U.S.A. 88: 4166–4170.

    Article  PubMed  CAS  Google Scholar 

  • Harrison P. M., G. C. Ford, D. W. Rice, J. M. A. Smith, A. Treffry, and J. L. White. 1987. Structural and functional studies on ferritins. Biochem. Soc. Trans. 15: 744–748.

    PubMed  CAS  Google Scholar 

  • Harvey P. W., R. G. Bell, and M. C. Nesheim. 1985. Iron deficiency protects inbred mice against infection with Plasmodium chabaudi. Infect. Imm. 50: 932–934.

    CAS  Google Scholar 

  • Harvey P. W., P. F. Heywood, M. C. Nesheim, K. Galme, M. Zegans, J. P. Habicht, L. S. Stephenson, K. L. Radimer, B. Brabin, and K. Forsyth. 1989. The effect of iron therapy on malarial infection in Papua New Guinean school children. Amer. J. Trop. Med. Hygiene 40: 12–18.

    CAS  Google Scholar 

  • Hausladen A., and tI. Fridovich. 1994. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J. Biol. Chem. 269: 29405–29408.

    CAS  Google Scholar 

  • Hedlund B., and P. E. Hallaway. 1993. High-dose systemic iron chelation attenuates reperfusion injury. Biochem. Soc. Trans. 21: 340–353.

    PubMed  CAS  Google Scholar 

  • Hemmaplardh D., and E. H. Morgan. 1977. The role of endocytosis in transferrin uptake by reticulocytes and bone marrow cells. Brit. J. Haem. 36: 85–96.

    Article  CAS  Google Scholar 

  • Henderson B. R., and L. C. Kühn. 1995. Differential modulation of the RNA-binding proteins IRP-1 and IRP-2 in response to iron. J. Biol. Chem. 270: 20509–20515.

    Article  CAS  Google Scholar 

  • Henderson B. R., E. Menotti, C. Bonnard, and L. C. Kühn. 1994. Optimal sequence and structure of iron responsive elements. J. Biol. Chem. 269: 17481–17489.

    CAS  Google Scholar 

  • Henderson B. R., E. Menotti, and L. C. Kühn. 1996. Iron regulatory proteins 1 and 2 bind distinct sets of RNA target sequences. J. Biol. Chem. 271: 4900–4908.

    Article  PubMed  CAS  Google Scholar 

  • Henderson B. R., C. Seiser, and L. C. Kühn. 1993. Characterization of a second RNA-binding protein in rodents with specificity for iron responsive elements. J. Biol. Chem. 268: 27327–27334.

    PubMed  CAS  Google Scholar 

  • Hentze M. W., and P. Argos. 1991. Homology between IRE-BP, a regulatory RNA-binding protein, aconitase and isopropylmalate isomerase. Nucl. Acids Res. 19: 1739–1740.

    Article  PubMed  CAS  Google Scholar 

  • Hentze M. W., S. W. Caughman, J. L. Casey, D. M. Koeller, T. A. Rouault, J. B. Harford, and R. D. Klausner. 1988. A model for the structure and function of iron responsive elements. Gene 72: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Hentze M. W., T. A. Rouault, S. W. Caughman, A. Dancis, J. B. Harford, and R. D. Klausner. 1987. A cis-acting element is necessary and sufficient for translational regulation of human ferritin expression in response to iron. Proc. Natl. Acad. Sci. U.S.A. 84: 6730–6734.

    Article  PubMed  CAS  Google Scholar 

  • Hentze M. W., T. A. Rouault, J. B. Harford, and R. D. Klausner. 1989. Oxidationreduction and the molecular mechanism of a regulatory RNA-protein interaction. Science 244: 357–359.

    Article  PubMed  CAS  Google Scholar 

  • Hirling H., A. Emery-Goodman, N. Thompson, B. Neupert, C. Seiser, and L. C. Kühn. 1992. Expression of active iron regulatory factor from a full-length human cDNA by in vitro transcription/translation. Nucl. Acids Res. 20: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Hirling H., B. R. Henderson, and L. C. Kühn. 1994. Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. EMBO J. 13: 453–461.

    PubMed  CAS  Google Scholar 

  • Hopkins C. R., A. Gibson, M. Shipman, D. K. Strickland, and I. S. Trowbridge. 1994. In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J. Cell Biol 125: 1265–1274.

    Article  PubMed  CAS  Google Scholar 

  • Howard J. B., and D. C. Rees. 1991. Perspectives on non-heme iron protein chemistry. Adv. Protein Chem. 42: 199–280.

    Article  PubMed  CAS  Google Scholar 

  • Hu, H-Y, Y., J. Gardner, P. Aisen, and A. I. Skoultchi. 1977. Inducibility of transferrin receptors on friend erythroleukemia cells. Science 197: 559–561.

    Article  PubMed  CAS  Google Scholar 

  • Hu J., and J. R. Connor. 1996. Demonstration and characterization of the iron regulatory protein in human brain. J. Neurochem. 67: 838–844.

    Article  PubMed  CAS  Google Scholar 

  • Huebers H. A., and C. A. Finch. 1987. The physiology of transferrin and transferrin receptors. Physiol. Rev. 67: 520–582.

    PubMed  CAS  Google Scholar 

  • Iacopetta B., J. L. Carpentier, T. Pozzan, D. P. Lew, P. Gorden, and L. Orci. 1986. Role of intracellular calcium and protein kinase C in the endocytosis of transferrin and insulin by HL60 cells. J. Cell Biol. 103: 851–856.

    Article  PubMed  CAS  Google Scholar 

  • Iacopetta B. J., and E. H. Morgan. 1983. The kinetics of transferrin endocytosis and iron uptake in rabbit reticulocytes. J. Biol. Chem. 258: 9108–9115.

    PubMed  CAS  Google Scholar 

  • Imlay J. A., S. M. Chin, and S. Linn. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640–642.

    Article  PubMed  CAS  Google Scholar 

  • International Nutritional Anemia Consultive Group (INACG). 1990. Combating iron deficiency anemia through food fortification technology. INACG report. XII INACG Meeting, Washington, D.C

    Google Scholar 

  • Iwai K., R. D. Klausner, and T. A. Rouault. 1995. Requirements for iron-regulated degradation of the RNA binding protein, iron regulatory protein 2. EMBO J. 21: 5350–5357.

    Google Scholar 

  • Jaffrey S. R., N. A. Cohen, T. A. Rouault, R. D. Klausner, and S. H. Snyder. 1994. The iron-responsive element binding protein: A target for synaptic actions of nitric oxide. Proc. Natl. Acad. Sci. U.S.A. 91: 12994–12998.

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey S. D., D. J. Haile, R. D. Klausner, and J. B. Harford. 1993. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both sequence and structure. Nucl. Acids. Res. 21: 4627–4631.

    Article  PubMed  CAS  Google Scholar 

  • Jandl J. H., J. K. Inman, R. L. Simmons, and D. W. Allen. 1959. Transfer of iron from serum iron-binding protein to human reticulocytes. J. Clin. Invest. 38: 161–185.

    Article  PubMed  CAS  Google Scholar 

  • Jandl J. H., and J. H. Katz. 1963. The plasma to cell cycle of transferrin. J. Clin. Invest. 42: 314–326.

    Article  PubMed  CAS  Google Scholar 

  • Jing S., T. Spencer, K. Miller, C. Hopkins, and I. S. Trowbridge. 1990. Role of the transferrin receptor cytoplasmic domain in endocytosis: Localization of a specific signal for internalization. J. Cell Biol. 110: 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Johnson M. K., A. J. Thomson, A. J. M. Richards, J. Peterson, A. E. Robinson, R. R. Ramsay, and T. P. Singer. 1984. Characterization of the Fe-S cluster in aconitase using low temperature magnetic circular dichroism spectroscopy. J. Biol. Chem. 259: 2274–2282.

    PubMed  CAS  Google Scholar 

  • Jones T., R. Spencer, and C. Walsh. 1978. Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogues. Biochemistry 17: 4011–4017.

    Article  PubMed  CAS  Google Scholar 

  • Kappas A., S. Sassa, R. A. Galbraith, and Y. Nordman. 1995. The porphyrias. In The Metabolic Basis of Inherited Disease, eds. C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle. Vol. 2, Ch. 66, pp. 2103–2161. McGraw-Hill, New York.

    Google Scholar 

  • Kaptain S., W. E. Downey, C. Tang, C. Philpott, D. Haile, D. G. Orloff, J. B. Harford, T. A. Rouault, and R. D. Klausner. 1991. A regulated RNA binding protein also possesses aconitase activity. Proc. Natl. Acad. Sci. U.S.A. 88: 10109–10113.

    Article  PubMed  CAS  Google Scholar 

  • Karin M., and B. Mintz. 1981. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J. Biol. Chem. 256: 3245–3252.

    PubMed  CAS  Google Scholar 

  • Katz, J. H. 1961. Iron and protein kinetics studied by means of doubly labeled human crystalline transferrin. J. Clin. Invest. 40: 2143–2152.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C., R. Rauner, and O. Gawron. 1972. On pig heart aconitase. Biochem. Biophys. Res. Commun. 47: 740–745.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. C, W. E. Antholine, and H. Beinert. 1997. An EPR investigation of the products of the reaction of cytosolic and mitochondrial aconitases with nitric oxide. J. Biol. Chem. 272: 20340–20347.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy M. C., and H. Beinert. 1988. The state of cluster SH and S2- of aconitase during cluster interconversions and removal: A convenient preparation of apoenzyme. J. Biol. Chem. 263: 8194–8198.

    PubMed  CAS  Google Scholar 

  • Kennedy M. C., M. H. Emptage, J.-L. Dreyer, and H. Beinert. 1983. The role of iron in the activation-inactivation of aconitase. J. Biol. Chem. 258: 11098–11105.

    PubMed  CAS  Google Scholar 

  • Kennedy, M. C, T. A. Kent, M. Emptage, H. Merkle, H. Beinert, and E. Münck. 1984. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. J. Biol. Chem. 259: 14463–14471.

    PubMed  Google Scholar 

  • Kennedy M. C., L. Mende-Mueller, G. A. Blondin, and H. Beinert. 1992. Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc. Natl. Acad. Sci. U.S.A. 89: 11730–11734.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy M. C., M. Werst, J. Telser, M. H. Emptage, H. Beinert, and B. M. Hoffman. 1987. Mode of substrate carboxyl binding to the [4Fe-4S]+ cluster of reduced aconitase as studied by 170 and 13C electron-nuclear double resonance spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 84: 8854–8858.

    Article  PubMed  CAS  Google Scholar 

  • Kent T. A., J.-L. Dreyer, M. C. Kennedy, B. H. Huynh, M. H. Emptage, H. Beinert, and E. Münck. 1982. Mössbauer studies of beef heart aconitase: Evidence for facile interconversions of iron-sulfur clusters. Proc. Natl. Acad. Sci. U.S.A. 79: 1096–1100.

    Article  PubMed  CAS  Google Scholar 

  • Kent T. A., M. H. Emptage, H. Merkle, M. C. Kennedy, H. Beinert, and E. Münck. 1985. Mössbauer studies of aconitase: Substrate and inhibitor binding, reaction intermediates, and hyperfine interactions of reduced 3Fe and 4Fe clusters. J. Biol. Chem. 260: 6871–6881.

    CAS  Google Scholar 

  • Kikinis Z., R. S. Eisenstein, A.J.E. Bettany, and H. N. Munro. 1995. Role of RNA secondary structure of the iron-responsive element in translational regulation of ferritin synthesis. Nucl. Acids Res. 4190–4195.

    Google Scholar 

  • Kilpatrick L. K., M. C. Kennedy, H. Beinert, R. S. Czernuszewicz, D. Qiu, and T. G. Spiro. 1994. Cluster structure and H-bonding in native, substrate-bound, and 3Fe forms of aconitase as determined by resonance Raman spectroscopy. J. Am. Chem. Soc. 116: 4053–4061.

    Article  CAS  Google Scholar 

  • Kim, H-Y., R. D. Klausner, and T. A. Rouault. 1995. Translational repressor activity is equivalent and is quantitatively predicted by in vitro RNA binding for two iron-responsive element-binding proteins, IRP1 and IRP2. J. Biol. Chem. 270: 4983–4986.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H-Y., T. LaVaute, K. Iwai, R. D. Klausner, and T. A. Rouault. 1996. Identification of a conserved and functional iron-responsive element in the 5’-untranslated region of mammalian mitochondrial aconitase. J. Biol. Chem. 271: 24226–24230.

    Article  PubMed  CAS  Google Scholar 

  • Klausner R. D., G. Ashwell, J. Van Renswoude, J. B. Harford, and K. R. Bridges. 1983 a. Binding of apotransferrin to K562 cells: Explanation of the transferrin receptor cycle. Proc. Natl. Acad. Sci. U.S.A. 80: 2263–2266.

    Article  PubMed  CAS  Google Scholar 

  • Klausner R. D., J. Van Renswoude, G. Ashwell, G. Kempf, A. N. Schechter, A. Dean, and K. R. Bridges. 1983 b. Receptor-mediated endocytosis of transferrin in K562 Cells. J. Biol Chem. 258: 4715–4724.

    PubMed  CAS  Google Scholar 

  • Klausner R. D., J. B. Harford, and J. Van Renswoude. 1984. Rapid internalization of the transferrin receptor in K562 cells is triggered by ligand binding or treatment with a phorbol ester. Proc. Natl. Acad. Sci. U.S.A. 81: 3005–3009.

    Article  PubMed  CAS  Google Scholar 

  • Klausner R. D., T. A. Rouault, and J. B. Harford. 1993. Regulating the fate of mRNA: The control of cellular iron metabolism. Cell 72: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Kohgo Y., M. Yokota, and J. W. Drysdale. 1980. Differential turnover of rat liver isoferritins. J. Biol Chem. 255: 5195–5200.

    PubMed  CAS  Google Scholar 

  • Köhler S. A., B. R. Henderson, and L. C. Kuhn. 1995. Succinate dehydrogenase B mRNA of Drosophilia melanogaster has a functional iron-responsive element in its 5’-untranslated region. J. Biol Chem. 270: 30781–30786.

    Article  Google Scholar 

  • Kraulis, P. J. 1991. Molscript: A program to produce detailed and schematic plots of protein structures. J. Appl. Cryst. 24: 946–950.

    Article  Google Scholar 

  • Krebs, E. G. 1986. In The Enzymes: Control by Phosphorylation, eds. P. D. Boyer and E. G. Krebs. Vol. XVII, Part A, pp.3–20. Academic Press,New Y

    Chapter  Google Scholar 

  • Kretchmer N., J. L. Beard, and S. Carlson. 1996. The role of nutrition in the development of normal cognition. Amer. J. Clin. Nutr. 63: 997S–1001S.

    PubMed  CAS  Google Scholar 

  • Kühn, L. C, and M. W. Hentze. 1992. Coordination of cellular iron metabolism by posttranscriptional gene regulation. J. Inorg. Biochem. 47: 183–192.

    Article  PubMed  Google Scholar 

  • Kühn L. C H. M. Schulman and P. Ponka. 1990. Iron transferrin requirements and TfR expression in proliferating cells. In Iron Storage and Transport eds. P. Ponka H. M. Schulman and R. C. Woodworm pp. 155–198. CRC Press Boca Raton FL

    Google Scholar 

  • Kumagai N.,S. H. Benedict, G. B. Mills, and E. W. Gelfand. 1987. Requirements for the simultaneous presence of phorbol esters and calcium ionophores in the expression of human T-lymphocyte proliferation-related genes. J. Immunol. 139: 1393–1399.

    PubMed  Google Scholar 

  • Kumagai N., S. H. Benedict, G. B. Mills, and E. W. Gelfand. 1988. Comparison of phorbol ester and phytohemagglutinin-induced signaling in human T-lymphocytes. J. Immunol. 140: 37–43.

    PubMed  CAS  Google Scholar 

  • Larrick J. W., and P. Cresswell. 1979. Modulation of cell surface iron TfRs by cellular density and state of activation. J. Supramol. Struct. 11: 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Lauble H., M. C. Kennedy, H. Beinert, and C. D. Stout. 1992. Crystal structures of aconitase with isocitrate and nitroisocitrate bound. Biochemistry. 31: 2735–2748.

    Article  PubMed  CAS  Google Scholar 

  • Lauble H., M. C. Kennedy, H. Beinert, and C. D. Stout. 1994. Crystal structures of aconitase with rans-aconitate and nitocitrate bound. J. Mol. Biol. 237: 437–451.

    Article  PubMed  CAS  Google Scholar 

  • Lauble H., and C. D. Stout. 1994. Steric and conformational features of the aconitase mechanism. Proteins: Structure, Function, Genetics 22: 1–11.

    Article  Google Scholar 

  • Leedman P. J., A. R. Stein, W. R. Chin, and J. T. Rogers. 1996. Thyroid hormone modulates the interaction between iron regulatory proteins and the ferritin mRNA iron-responsive element. J. Biol. Chem. 271: 12017–12023.

    Article  PubMed  CAS  Google Scholar 

  • Leibold E. A., and B. Guo. 1992. Iron-dependent regulation of ferritin and transferrin receptor expression by the iron-responsive element binding protein. Ann. Rev. Nutr. 12: 345–368.

    Article  CAS  Google Scholar 

  • Leibold E. A., A. Laudano, and Y. Yu. 1990. Structural requirements of iron-responsive elements for binding of the protein involved in both TfR and ferritin mRNA post-transcriptional regulation. Nucl. Acids Res. 18: 1819–1824.

    Article  PubMed  CAS  Google Scholar 

  • Leibold E. A., and H. N. Munro. 1987. Characterization and evolution of the expressed rat ferritin light subunit gene and its pseudogene family. J. Biol. Chem. 262: 7335–7341.

    PubMed  CAS  Google Scholar 

  • Leibold E. A., and H. N. Munro. 1988. Cytoplasmic protein binds in vitroto a conserved sequence in the 5’ untranslated region of ferritin H-and L-chain mRNAs. Proc. Natl. Acad. Sci. U.S.A. 85: 2171–2175.

    Article  PubMed  CAS  Google Scholar 

  • Levi S., P. Santabrogio, A. Cozzi, E. Rovida, B. Corsi, E. Tamborini, S. Spada, A. Albertini, and P. Arosio. 1994. The role of the l-chain in ferritin iron incorporation. Studies of homo and heteropolymers. J. Mol. Biol. 238: 649–654.

    Article  PubMed  CAS  Google Scholar 

  • Li, C-Y., A. Watkins, and J. Glass. 1994. The H+-ATPase from reticulocyte endosomes reconstituted into liposomes acts as an iron transporter. J. Biol. Chem. 269: 10242–10246.

    PubMed  CAS  Google Scholar 

  • Lim, K-C, H. Ishihara, R. D. Riddle, Z. Yang, N. Andrews, M. Yamamoto, and J. D. EngeL 1994. Structure and regulation of the chicken erythroid δ-aminolevulinate synthase gene. Nucl. Acids. Res. 22:1226–

    Article  PubMed  CAS  Google Scholar 

  • Linder, M. C, G. M. Nagel, M. Roboz, and D. M. Hungerford, Jr. 1981. The size and shape of heart and muscle ferritins analyzed by sedimentation, gel filtration, and electrophoresis. J. Biol. Chem. 256: 9104–

    PubMed  CAS  Google Scholar 

  • Liochev S. I., and I. Fridovich. 1993. The role of O2 -. in the production of HO7: In vitro and in vivo. Free Rad. Biol. Med. 16: 29–33.

    Article  Google Scholar 

  • Martin A., B. K. Burgess, C. D. Stout, V. Cash, D. R. Dean, G. M. Jensen, and P. J. Stephens. 1990. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe-S] cluster driven protein rearrangement. Proc. Natl. Acad. Sci. U.S.A. 87: 598–602.

    Article  PubMed  CAS  Google Scholar 

  • Martins, E. A. L., R. L. Robalino, and R. Meneghini. 1995. Oxidative stress induces activation of a cytosolic protein responsible for control of iron uptake. Arch. Biochem. Biophys. 316: 128–13

    Article  PubMed  CAS  Google Scholar 

  • Mascotti D. P., L. S. Goessling, D. Rup, and R. E. Thach. 1997. Mechanisms for induction and re-repression of ferritin synthesis. In Metal Ions in Gene Regulation, eds.S. Silver and W. Walden. Ch. 8, pp. 217–230, Chapman & Hall, New York.

    Google Scholar 

  • Mattia E., D. Josic, G. Ashwell, R. Klausner, and J.Van Renswoude. 1986. Regulation of intracellular iron distribution in K562 erythroleukemia cells. J. Biol. Chem. 261:4587–4593.

    PubMed  CAS  Google Scholar 

  • McClelland A., L. C. Kühn, and F. H. Ruddle. 1984. The human transferrin receptor gene: Genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 39: 267–274.

    Article  PubMed  CAS  Google Scholar 

  • McKnight G. S., D. C. Lee, D. Hemmaplardh, C. A. Finch, and R. D. Palmiter. 1980. Transferrin gene expression: Effects of nutritional iron deficiency. J. Biol. Chem. 255: 144–14

    PubMed  CAS  Google Scholar 

  • McRee, D. E. (1992). A visual protein crystallographic software system for XII/Xview. J. Mol. Graphics 10: 44–47.

    Article  Google Scholar 

  • Melefors, Ö., B. Goossen, H. E. Jonansson, R. Stripecke, N. K. Gray, and M. W. Hentze. 1993. Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells. J. Biol. Chem. 268: 5974–5978.

    PubMed  Google Scholar 

  • Miller K., K. Shipman, I. S. Trowbridge, and C. R. Hopkins. 1991 a. Transferrin receptors promote the formation of clathrin lattices. Cell 65: 621–632.

    Article  PubMed  CAS  Google Scholar 

  • Miller L. L., S. C. Miller, S. V. Torti, Y. Tsuji, and F. M. Torti. 1991 b. Iron-independent induction of ferritin H chain by tumor necrosis factor. Proc. Natl. Acad. Sci. U.S.A. 88: 4946–4950.

    Article  PubMed  CAS  Google Scholar 

  • Morgan E. H., and T. C. Appleton. 1969. Autoradiographic localization of 125-I-labeled transferrin in rabbit reticulocytes. Nature 223: 1371–1372.

    Article  PubMed  CAS  Google Scholar 

  • Morgan E. H., and E. Baker. 1986. Iron uptake and metabolism by hepatocytes. Fed. Proc. 45: 2810–2816.

    PubMed  CAS  Google Scholar 

  • Müller-Eberhard U., H. H. Liem, J. A. Grasso, S. Giffhorn-Katz, M. G. DeFalco, and N. R. Katz. 1988 Increase in surface expression of transferrin receptors on cultured hepatocytes of adult rats in response to iron deficiency. J. Biol. Chem. 263: 14753–14756.

    PubMed  Google Scholar 

  • Müllner E. W., B. Neupert, and L. C. Kühn. 1989. A specific mRNA binding factor regulates the iron-dependent stability of cytoplasmic transferrin receptor mRNA. Cell 58: 373–38

    Article  PubMed  Google Scholar 

  • Müllner E. W., S. Rothenberger, A. M. Müller, and L. C. Kühn. 1992. In vivo and in vitro modulation of the mRNA-binding activity of iron regulatory factor.Eur. J. Biochem. 208: 597–6

    Article  PubMed  Google Scholar 

  • Munro H. N., N. Aziz, E. A. Leibold, M. Murray, J. Rogers, J. K. Vass, and K. White. 1988. The ferritin genes: Structure, expression and regulation. Ann. NY. Acad. Sci. 526: 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Munro H. N., and M. C. Linder. 1978. Ferritin: Structure, biosynthesis, and role in iron metabolism. Physiol. Rev. 58: 317–396.

    PubMed  CAS  Google Scholar 

  • Neupert B., E. Menotti, and L. C. Kühn. 1995. A novel method to identify nucleic acid binding sites in proteins by scanning mutagenesis: Application to iron regulatory protein. Nucl. Acids Res. 14: 2579–2583.

    Article  Google Scholar 

  • Neupert B., N. A. Thompson, C. Meyer, and L. C. Kühn. 1990. A high yield affinity purification method for specific RNA-binding proteins: Isolation of the iron regulatory factor from human placenta. Nucl. Acids Res. 18: 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Nichols G. M., A. R. Pearce, X. Alverez, N. K. Bibb, K. Y. Nichols, C. B. Alfred, and J. Glass. 1992. The mechanisms of nonheme iron uptake determined in IEC-6 rat intestinal cells. J. Nutr. 122: 945–952.

    CAS  Google Scholar 

  • Núñez, M-T., V. Gaete, J. A. Watkins, and J. Glass. 1990. Mobilization of iron from endocytic vesicles. J. Biol. Chem. 265: 6688–6692.

    Google Scholar 

  • Núñez, M-T., J. Glass, S. Fischer, L. M. Lavidor, E. M. Lenk, and S. H. Robinson. 1977. Transferrin receptors in developing erythroid cells. Brit. J. Haem. 36: 519–526.

    Article  Google Scholar 

  • O’Halloran, T. V. 1993. Transition metals in control of gene expression. Science 261: 715–72

    Article  PubMed  Google Scholar 

  • Oliveira C. C., B. Goossen, N. I. Zanchin, J. E. McCarthy, M. W. Hentze, and R. Stripecke. 1993. Translational repression by human iron-regulatory factor (IRF) in Saccharomyces cerevisiae. Nucl. Acids. Res. 21: 5316–5322.

    Article  PubMed  CAS  Google Scholar 

  • Oliver C. N., P. E. Starke-Reed, E. R. Stadtman, G. J. Liu, G. M. Carney, and R. A. Floyd. 1990. Oxidative damage to brain proteins, loss of glutamine synthetase activity and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Nad. Acad. Sci. U.S.A. 87: 5144–5147.

    Article  CAS  Google Scholar 

  • Oria R., L. Sanchez, T. Houston, M. W. Hentze, F. Y. Liew, and J. H. Brock. 1995. Effect of nitric acid on expression of transferrin receptor and ferritin and on cellular ironmetabolism in K562 human erythroleukemia cells. Blood 85: 2962–3271.

    PubMed  CAS  Google Scholar 

  • Owen D., and L. C. Kühn. 1987. Noncoding 3’ sequences of the transferrin receptor gene are required for mRNA regulation by iron. EMBO J. 6: 1287–1293.

    PubMed  CAS  Google Scholar 

  • Pantopoulos K., and M. W. Hentze. 1995 a. Nitric oxide signaling to iron-regulatory protein: Direct control of ferritin mRNA translation and transferrin receptor RNA stability in transfected fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 92: 1267–1271.

    Article  PubMed  CAS  Google Scholar 

  • Pantopoulos K., and M. W. Hentze. 1995 b. Rapid responses to oxidative stress mediated by iron regulatory protein. EMBO J. 14: 2917–2924.

    PubMed  CAS  Google Scholar 

  • Pantopoulos K., G. Weiss, and M. W. Hentze. 1996. Nitric oxide and oxidative stress (H2O2) control mammalian iron metabolism by different pathways. Mol. Cell. Biol. 16: 3781–3788.

    PubMed  CAS  Google Scholar 

  • Patino M. M., and W. E. Walden. 1992. Cloning of a functional cDNA for the rabbit ferritin mRNA repressor protein. J. Biol. Chem. 267: 19011–19016.

    PubMed  CAS  Google Scholar 

  • Pelosi-Testa E., P. Samoggia, G. Giannella, E. Montesoro, T. Caravita, G. Salvo, A. Camagna, G. Isacchi, and U. Testa. 1988. Mechanisms underlying T-lymphocyte activation: Mitogen initiates and IL-2 amplifies the expression of transferrin receptors via intracellular iron levels. Immunology 64: 273–279.

    PubMed  CAS  Google Scholar 

  • Petering D., J. A. Fee, and G. Palmer. 1971. The oxygen sensitivity of spinach ferredoxin and other iron-sulfur proteins: The formation of protein-bound sulfur-zero. J. Biol. Chem. 246: 643–653.

    CAS  Google Scholar 

  • Phillips J. D., D. V. Kinikini, Y. Yu, B. Guo, and E. A. Leibold. 1996. Differential regulation of IRP1 and IRP2 by nitric oxide in rat hepatoma cells. Blood 87: 2983–2992.

    PubMed  CAS  Google Scholar 

  • Philpott C. C., R. D. Klausner, and T. A. Rouault. 1994. The bifunctional iron responsive element-binding protein/cytosolic aconitase (IRP1): The role of active site residues in ligand binding and regulation. Proc. Natl. Acad. Sci. U.S.A. 91: 7321–7325.

    Article  PubMed  CAS  Google Scholar 

  • Pollitt, E. 1993. Iron deficiency and cognitive function. Ann. Rev. Nutr. 13: 521–537.

    Article  CAS  Google Scholar 

  • Puglisi J. D., R. Tan, B. J. Calnan, A. D. Frankel, and J. R. Williamson. 1992. Conformation of the TAR RNA-arginine complex by NMR spectroscopy. Science 257: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Randell E. W., J. G. Parkes, N. F. Oliver, and D. M. Templeton. 1994. Uptake of non-transferrin-bound iron by both reductive and nonreductive processes is modulated by intracellular iron. J. Biol. Chem. 269: 16046–16053.

    PubMed  CAS  Google Scholar 

  • Rao K. K., D. Shapiro, E. Mattia, K. Bridges, and R. Klausner. 1985. Effects of alterations in cellular iron on biosynthesis of the transferrin receptor in K562 cells. Mol. Cell. Biol. 5: 595–600.

    PubMed  CAS  Google Scholar 

  • Reilly P. M., H. J. Schiller, and G. B. Bulkley. 1991. Reactive oxygen metabolites in shock. In Trauma IV.Ch. 8, pp. 1–30. Scientific American Books, New York.

    Google Scholar 

  • Renaudie F., A. K. Yachov, B. Grandchamp, R. Jones, and C. Beaumont. 1992. A second ferritin L subunit is encoded by an intronless gene in the mouse. Mamm. Genome 2: 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Richardson D. R., V. Neumannova, E. Nagy, and P. Ponka. 1995. The effect of redoxrelated species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells. Blood 86: 3211–3219.

    PubMed  CAS  Google Scholar 

  • Robbins A. H., and C. D. Stout. 1989. The structure of aconitase. Proteins: Structure, Function, Genetics 5: 289–312.

    Article  CAS  Google Scholar 

  • Roberts S., and A. Bomford. 1988. Ferritin iron kinetics and protein turnover in K562 cells. J. Biol. Chem. 263: 19181–19187.

    PubMed  CAS  Google Scholar 

  • Rogers J. T., and H. N. Munro. 1987. Translation of ferritin light and heavy subunit mRNAs is regulated by intracellular iron levels in rat hepatoma cells. Proc. Natl. Acad. Sci. U.S.A. 84: 2277–2281.

    Article  PubMed  CAS  Google Scholar 

  • Rothenberger S., B. J. Iacopetta, and L. C. Kühn. 1987. Endocytosis of the transferrin receptor requires the cytoplasmic domain but not its phosphorylation site. Cell 49: 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Rothenberger S., E. W. Müllner, and L. C. Kühn. 1990. The mRNA-binding protein that controls ferritin and TfR expression is conserved during evolution. Nucl. Acids Res. 18: 1175–1179.

    Article  PubMed  CAS  Google Scholar 

  • Rouault T. A., D. J. Haile, W. E. Downey, C. C. Philpott, C. Tang, F. Samaniego, J. Chin, I. Paul, D. Orloff, J. B. Harford, and M. W. Hentze. 1992. An iron-sulfur cluster plays an unusual regulatory role in the iron regulatory element binding protein. Biometals 5: 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Rouault T. A., M. W. Hentze, S. W. Caughman, J. B. Harford, and R. D. Klausner. 1988. Binding of a cytosolic protein to the iron-responsive element of human ferritin messenger RNA. Science 241: 1207–1210.

    Article  PubMed  CAS  Google Scholar 

  • Rouault T. A., M. W. Hentze, D. J. Haile, J. B. Harford, and R. D. Klausner. 1989. The iron-responsive element binding protein: A method for the affinity purification of a regulatory RNA-binding protein. Proc. Natl. Acad. Sci. U.S.A. 86: 5768–5772.

    Article  PubMed  CAS  Google Scholar 

  • Rouault T. A., C. D. Stout, S. Kaptain, J. B. Harford, and R. D. Klausner. 1991. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: Functional implications. Cell 64: 881–883.

    Article  PubMed  CAS  Google Scholar 

  • Rouault T. A., C. K. Tang, S. Kaptain, W. H. Burgess, D. J. Haile, F. Samaniego, O. W. McBride, J. B. Harford, and R. D. Klausner. 1990. Cloning of the cDNA encoding an RNA regulatory protein—The human iron-responsive element-binding protein. Proc. Natl. Acad. Sci. U.S.A. 87: 7958–7962.

    Article  PubMed  CAS  Google Scholar 

  • Saddi R., and A. Von der Decken. 1965. The effect of iron administration on the incorporation of [3H]leucine into ferritin by rat liver systems. Biochim. Biophys. Acta. 111: 124–133.

    Article  PubMed  CAS  Google Scholar 

  • Samaniego F., J. Chin, K. Iwai, T. A. Rouault, and R. D. Klausner. 1994. Molecular characterization of a second iron responsive element binding protein, iron regulatory protein 2. J. Biol. Chem. 269: 30904–30910.

    PubMed  CAS  Google Scholar 

  • Sato N., and A. Miyajima. 1994. Multimeric cytokine receptors: Common versus specific functions. Current Biol. 6: 174–179.

    CAS  Google Scholar 

  • Schalinske K. L., S. A. Anderson, P. T. Tuazon, O. S. Chen, M. C. Kennedy, and R. S. Eisenstein. 1997. The iron-sulfur cluster of iron regulatory protein 1 modulates the accessibility of rna binding and phosphorylation sites. Biochemistry. 36: 3950–3958.

    Article  PubMed  CAS  Google Scholar 

  • Schalinske K. L., and R. S. Eisenstein. 1996 Phosphorylation and activation of both iron regulatory protein 1 (IRP1) and IRP2 in HL60 cells. J. Biol. Chem. 271: 7168–7176.

    Article  PubMed  CAS  Google Scholar 

  • Seiser, C, S. Teixeira, and L. Kühn. 1993. Interleukin-2-dependent transcriptional and post-transcriptional regulation of transferrin receptor mRNA. J. Biol. Chem. 268: 13074–13080.

    PubMed  CAS  Google Scholar 

  • Seligman P. A., R. B. Schleicher, and R. H. Allen. 1979. Isolation and characterization of the transferrin receptor from human placenta. J. Biol. Chem. 254: 9943–9946.

    PubMed  CAS  Google Scholar 

  • Sierzputowska-Gracz H., R. A. McKenzie, and E. C. Theil. 1995. The importance of a single G in the hairpin loop of the iron responsive element (IRE) in ferritin mRNA for structure: An NMR spectroscopy study. Nucl Acids. Res. 23: 146–153.

    Article  PubMed  CAS  Google Scholar 

  • Sies, H. 1991. Oxidative stress: From basic science to clinical application. Amer. J. Med. 91: 31S–38S.

    Article  PubMed  CAS  Google Scholar 

  • Sohal R. S., and W. C. Orr. 1992. The relationship between antioxidants, prooxidants and the aging process. Ann. NY. Acad. Sci. 663: 74–84.

    Article  PubMed  CAS  Google Scholar 

  • Srere, P. A. 1992. The molecular physiology of citrate. In P. BoonChock eds. Current Topics in Cellular Regulation Vol. 33, pp. 261–275. Academic Press,New Yor

    Google Scholar 

  • Srere, P. A. 1994. Complexities of metabolic regulation. Trends in Biochem. Sci. 19: 519–520.

    Article  CAS  Google Scholar 

  • Stadtman E. R., and C. N. Oliver. 1991. Metal-catalyzed oxidation of proteins. J. Biol Chem. 266: 2005–2008.

    PubMed  CAS  Google Scholar 

  • Stevens R. G., D. Y. Jones, M. S. Micozzi, and P. R. Taylor. 1988. Body iron stores and the risk of cancer. N Engl. J. Med. 319: 1047–1052.

    Article  PubMed  CAS  Google Scholar 

  • Sturrock A., J. Alexander, J. Lamb, C. Craven, and J. Kaplan. 1990. Characterization of a transferrin-independent uptake system for iron in HeLa cells. J. Biol Chem. 265: 3139–3145.

    PubMed  CAS  Google Scholar 

  • Surerus K. K., M. C. Kennedy, H. Beinert, and E. Münck. 1989. Mössbauer study of the inactive Fe3S4 and Fe3Se4 and the active Fe4Se4 forms of beef heart aconitase. Proc. Natl Acad. Sci. U.S.A. 86: 9846–9850.

    Article  PubMed  CAS  Google Scholar 

  • Swenson G. R., and W. E. Walden. 1994. Localization of an RNA binding element of the iron responsive element binding protein within a proteolytic fragment containing iron coordination ligands. Nucl. Acids Res. 22: 2627–2633.

    Article  PubMed  CAS  Google Scholar 

  • Taetle R., S. Ralph, S. Smedsrud, and I. Trowbridge. 1987. Regulation of transferrin receptor expression in myeloid leukemia cells. Blood 70: 852–859.

    PubMed  CAS  Google Scholar 

  • Teichmann R., and W. Stremmel. 1990. Iron uptake by human upper small intestine microvillous membrane vesicles. J. Clin. Invest. 86: 2145–2153.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira S., and L. C. Kühn. 1991. Post-transcriptional regulation of the TfR and 4F2 antigen heavy chain mRNA during growth activation of spleen cells. Eur. J. Biochem. 202: 819–826.

    Article  PubMed  CAS  Google Scholar 

  • Testa U., L. Kühn, M. Petrini, M. T. Quaranta, E. Pelosi, and C. Peschle. 1991. Differential regulation of IRE-BP(s) in extracts of activated lymphocytes versus macrophages. J. Biol. Chem. 266: 13925–13930.

    PubMed  CAS  Google Scholar 

  • Testa U., M. Petrini, M. T. Quaranta, E. Pelosi-Testa, G. Mastroberardino, A. Camagna, G. Boccoli, M. Sargiacomo, G. Isacchi, A. Cozzi, P. Arosio, and C. Peschle. 1989. Iron up-modulates the expression of TfRs during monocyte-macrophage maturation. J. Biol. Chem. 264: 13181–13197.

    PubMed  CAS  Google Scholar 

  • Testa U., M. Titieux, F. Louache, P. Thomopoulos, and H. Rochant. 1984. Effect of phorbol esters on iron uptake in human hematopoietic cell lines. Cancer Res. 44: 4981–498

    PubMed  CAS  Google Scholar 

  • Theil, E. C. 1987. Ferritin: Structure, gene regulation and cellular function in animals, plants, and microorganisms. Ann. Rev. Biochem. 56: 289–315.

    Article  PubMed  CAS  Google Scholar 

  • Theil, E. C. 1994. Iron regulatory elements (IREs): A family of mRNA non-coding sequences. Biochem. J. 304: 1–11.

    PubMed  Google Scholar 

  • Thorp H. H., R. A. Mckenzie, P. N. Lin, W. E. Walden, and E. C. Theil. 1996. Cleavage of functionally relevant sites in ferritin mRNA by oxidizing metal complexes. Inorg. Chem. 35: 2113–2119.

    Article  Google Scholar 

  • Thorstensen K., and I. Romslo. 1990. The role of transferrin in the mechanism of iron uptake. Biochem. J. 271: 1–10.

    PubMed  CAS  Google Scholar 

  • Trowbridge, I. S. 1991. Endocytosis and signals for internalization. Current Biol. 3: 634–641.

    CAS  Google Scholar 

  • Trowbridge I. S., J. F. Collawn, and C. R. Hopkins. 1993. Signal-dependent membrane protein trafficking in the endocytic pathway. Ann. Rev. Cell Biol. 9: 129–161.

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge I. S., and M. B. Omary. 1981. Human cell surface glycoprotein related to cell proliferation is the receptor for transferrin. Proc. Natl. Acad. Sci. U.S.A. 78: 3039–3043.

    Article  PubMed  CAS  Google Scholar 

  • Wagstaff M., M. Worwood, and A. Jacobs. 1978. Properties of human tissue isoferritins. Biochem. J. 173: 969–977.

    PubMed  CAS  Google Scholar 

  • Walden W. E., S. Daniels-McQueen, P. H. Brown, L. Gaffield, D. A. Russell, D. Bielser, L. C. Bailey, and R. E. Thach. 1988. Translational repression in eucaryotes: Partial purification and characterization of a repressor of ferritin mRNA translation. Proc. Natl. Acad. Sci. U.S.A. 85: 9503–9507.

    Article  PubMed  CAS  Google Scholar 

  • Walden W. E., M. M. Patino, and L. Gaffield. 1989. Purification of a specific repressor of ferritin mRNA translation from rabbit liver. J. Biol. Chem. 264: 13765–13769.

    PubMed  CAS  Google Scholar 

  • Wang, Y.-H., S. R. Sczekan, and E. C. Theil. 1990. Structure of the 5’ untranslated regulatory region of ferritin mRNA studied in solution. Nucl. Acids Res. 18: 4463–4468.

    Article  PubMed  CAS  Google Scholar 

  • Watkins J. A., J. D. Altazan, P. Elder, C.-Y. Li, M-T. Núñez, X.-X. Cui, and J. Glass. 1992. Kinetic characterization of reductant dependent processes for iron mobilization from endocytic vesicles. Biochemistry 31: 5820–5830.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg, E. D. 1993. The development of awareness of iron-withholding defense. Perspec. Bio. Med. 36: 215–221.

    CAS  Google Scholar 

  • Weiss G., B. Goossen, W. Doppler, D. Fuchs, K. Pantopoulos, G. Werner-Felmayer, H. Wachter, and M. W. Hentze. 1993. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. EMBO J. 12: 3651–3657.

    PubMed  CAS  Google Scholar 

  • Weiss G., G. Werner-Felmayer, E. R. Werner, K. Grünewald, H. Wachter, and M. W. Hentze. 1994. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J. Exp. Med. 180: 969–976.

    Article  PubMed  CAS  Google Scholar 

  • Werst M. M., M. C. Kennedy, H. Beinert, and B. M. Hoffman. 1990 a. 17O, 1H and 2Hai]electron nuclear double resonance characterization of solvent substrate and inhibitor binding to the [4Fe-4S]+ cluster of aconitase. Biochemistry 29: 10526–10532.

    Article  PubMed  CAS  Google Scholar 

  • Werst M. M., M. C. Kennedy, A. L. P. Houseman, H. Beinert, and B. M.H offman. 1990 b. Characterization of the [4Fe-4S]+ cluster at the active site of aconitase by 57Fe, 33S, and 14N electron nuclear double resonance spectroscopy. Biochemistry 29: 10533–10540.

    Article  PubMed  CAS  Google Scholar 

  • White K., and H. N. Munro. 1988. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J. Biol. Chem. 263: 8938–8942.

    PubMed  CAS  Google Scholar 

  • Wiley H. S., and J. Kaplan. 1984. Epidermal growth factor rapidly induces a redistribution of transferrin receptor pools in human fibroblasts. Proc. Natl Acad. Sci. U.S.A. 81: 7456–7460.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. J. P. 1990. An introduction to the nature of iron transport and storage. In Iron Transport and Storage, eds.P. Ponka, H. M. Schulman, and R. C. Woodworm. pp. 1–16, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Wolf, G. 1994. An integrin-mobilferrin iron transport pathway in intestine and hematopoietic cells. Nutr. Rev. 52: 387–389.

    Article  PubMed  CAS  Google Scholar 

  • Wright T. L., P. Brissot, W. L. Ma, and R. A. Weisiger. 1986. Characterization of non-transferrin-bound iron clearance by rat liver. J. Biol. Chem. 261: 10909–10914.

    PubMed  CAS  Google Scholar 

  • Young S. P., and P. Aisen. 1988. The liver and iron. In The Liver: Biology and Pathophysiology, 2nd edition, eds. I. W. Arias, W. B. Jakoby, H. Popper, D. Schacter, and D. A. Shafritz. pp. 535–550. Raven Press, New York.

    Google Scholar 

  • Yu Y., E. Radisky, and E. A. Leibold. 1992. The IRE binding protein. J. Biol Chem. 267: 19005–19010.

    PubMed  CAS  Google Scholar 

  • Zähringer J., B. S. Baliga, and H. N. Munro. 1976. Novel mechanism for translational control in regulation of ferritin synthesis by iron. Proc. Natl. Acad. Sci. U.S.A. 73: 857–861.

    Article  PubMed  Google Scholar 

  • Zheng L., M. C. Kennedy, G. A. Blondin, H. Beinert, and H. Zalkin. 1992 a. Binding of cytosolic aconitase to the iron responsive element of porcine mitochondrial aconitase mRNA. Arch. Biochem. Biophys. 299: 356–360.

    Article  PubMed  CAS  Google Scholar 

  • Zheng L., M. C. Kennedy, H. Beinert, and H. Zalkin. 1992 b. Mutational analysis of active site residues in pig heart aconitase. J. Biol. Chem. 267: 7895–7903.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eisenstein, R.S., Kennedy, M.C., Beinert, H. (1998). The Iron Responsive Element (IRE), the Iron Regulatory Protein (IRP), and Cytosolic Aconitase. In: Silver, S., Walden, W. (eds) Metal Ions in Gene Regulation. Chapman & Hall Microbiology Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5993-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5993-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7745-0

  • Online ISBN: 978-1-4615-5993-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics