Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 196))

Abstract

A provocative array of observations from both laboratory and clinical investigations indicate that alterations in folate status may modulate the process of neoplastic transformation in selected epithelial tissues. Diminished folate status appears to promote carcinogenesis. Considerably more speculative is the concept that supraphysiologic folate status might afford some protective effect. Although observations to support such contentions exist for the uterine cervix, stomach, bronchopulmonary tree and esophagus, the evidence is most compelling for the colorectum. This chapter will focus on these issues as they pertain to the colorectum, and outline some of the possible mechanisms by which these effects may be exerted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Niekerk W. Cervical cytologic abnormalities caused by folic acid deficiency. Acta Cytol 10:67–73, 1966.

    Google Scholar 

  2. Butterworth C Jr, Hatch K, Gore H, Mueller H, Krumdieck C. Improvement in cervical dysplasia associated with folic acid therapy in users of oral contraceptives. Am J Clin Nutr 35:73–82, 1982.

    PubMed  CAS  Google Scholar 

  3. Heimburger D, Alexander C, Birch R, Butterworth C Jr, Bailey W, Krumdieck C. Improvement in bronchial squamous metaplasia in smokers treated with folate and vitamin B12. JAMA 259:1525–1530, 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Butterworth C Jr, Hatch K, Soong S-J, et al. Oral folic acid supplementation for cervical dysplasia: A clinical intervention trial. Am J Obstetr Gynecol 166:803–809, 1992.

    Google Scholar 

  5. Nasiell K, Roger V, Nasiell M. Behavior of mild cervical dysplasia during long-term follow-up. Obstet Gynecol 67:665–669, 1986.

    Article  PubMed  CAS  Google Scholar 

  6. Butterworth C Jr, Hatch K, Macaluso M et al. Folate deficiency and cervical dysplasia. JAMA 267:528–533, 1992.

    Article  PubMed  Google Scholar 

  7. Lashner B, Heidenreich P, Su G, Kane S, Hanauer S. The effect of folate supplementation on the incidence of dysplasia and cancer in chronic ulcerative colitis. Gastroenterology 97:255–259, 1989.

    PubMed  CAS  Google Scholar 

  8. Greenstein A, Sachar D, Smith H, Janowitz, Aufses A. A comparison of cancer risk in Crohn’s disease and ulcertive colitis. Cancer 48:2742–2745, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Franklin J, Rosenberg I. Impaired folic acid absorption in inflammatory bowel disease: Effects of salicyla-zosulfapyradine (Azulfidine). Gastroenterology 64:517–525, 1973.

    PubMed  CAS  Google Scholar 

  10. Halsted C, Gandhi G, Tamura T. Sulfasalazine inhibits the absorption of folates in ulcerative colitis. N Engl J Med 305:1513–1517, 1981.

    Article  PubMed  CAS  Google Scholar 

  11. Selhub J, Dhar G, Rosenberg I. Inhibition of folate enzymes by sulfasalazine. J Clin Invest 61:221–224, 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Lashner B. Red blood cell folate is associated with the development of dysplasia and cancer in ulcerative colitis. J Cancer Res Clin Biol 119:549–554, 1993.

    Article  CAS  Google Scholar 

  13. Freudenheim J, Graham S, Marshall J et al. Folate intake and carcinogenesis of the colon and rectum. Int J Epidemiol 20:368–374, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Benito E, Stiggelbout A, Bosch F et al. Nutritional factors in colorectal cancer risk: A case-control study in Majorca. Int J Cancer 49:161–167, 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Benito E, Cabeza E, Moreno V, Obrador A, Bosch, F. Diet and colorectal adenomas: A case-control study in Majorca. Int J Cancer 55:213, 1993.

    Article  PubMed  CAS  Google Scholar 

  16. Meyer F, White E. Alcohol and nutrients in relation to colon cancer in middle-aged adults. Am J Epidemiol 138:225–236, 1993.

    PubMed  CAS  Google Scholar 

  17. Giovannucci E, Stampfer M, Colditz G et al. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Nat Cancer Inst 85:875–884, 1993.

    Article  PubMed  CAS  Google Scholar 

  18. Paspatis G, Kalafatis E, Oros L et al. Folate status and adenomatous colonic polyps (a colonoscopically controlled study). Dis Colon Rectum 38:64–68, 1995.

    Article  PubMed  CAS  Google Scholar 

  19. Cravo M, Fidalgo P, Pereira A, Gouveia-Oliveira A, Leitao N, Costa Mira F. Folate supplementation increases the degree of DNA methylation in patients with colonic neoplasms. Eur J Cancer Prevent 3:473–479, 1994.

    Article  CAS  Google Scholar 

  20. Paspatis G, Karamanolis D. Folate supplementation and adenomatous colonic polyps. Dis Colon Rectum 37:1340–1341, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Goelz S, Vogelstein B, Hamilton S et al. Hypo-methylation of DNA from benign and malignant human colon neoplasms. Science 28:187–190.

    Google Scholar 

  22. Feinberg A, Gehrke C, Kuo K, Ehrlich M. Reduced genomic 5-methylcytosine content in human colonie neoplasia. Cancer Res 48:1159–1161, 1988.

    PubMed  CAS  Google Scholar 

  23. Feinberg A, Vogelstein B. Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Comm 111:47–54, 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Makos M, Nelkin B, Lerman M et al. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proceed Nat Acad Sci USA 89:1929–1933, 1992.

    Article  CAS  Google Scholar 

  25. Hamilton S. Molecular genetics of colorectal cancer. Cancer 70:1216–1221, 1992.

    Article  PubMed  CAS  Google Scholar 

  26. Cravo M, Mason J, Dayal Y et al. Folate deficiency enhances the development of colonie neoplasia in dim-ethylhydrazine-treated rats. Cancer Res 52:5002–5006, 1992.

    PubMed  CAS  Google Scholar 

  27. Rogers A, Nauss K. Rodent models of carcinoma of the colon. Digest Dis Sci 30(Suppl):87S–102S, 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Yander G, Halsey H, Kenna M, Augenlicht L. Amplification and elevated expression of c-myc in a chemically induced mouse colon tumor. Cancer Res 45: 4433–4438, 1985.

    PubMed  CAS  Google Scholar 

  29. Caignard A, Kitagawa Y, Sato S, Nagao M. Activated k-ras in tumorigenic and non-tumorigenic cell variants from a rat colon adenocarcinoma, induced by dimethylhydrazine. Jpn J Cancer Res 79:244–249, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Walzern R, Clifford A. Folate deficiency in rats fed diets containing free amino acids or intact proteins. J Nutr 118:1089–1096, 1988.

    Google Scholar 

  31. Kim Y-I, Choi S, Salomon R et al. Dietary folate protects against the development of macroscopic colonic neoplasms in a dose-responsive manner in the dimethylhydrazine rat model. Gastroenterology A489, 1995.

    Google Scholar 

  32. Razin A, Cedar H. DNA methylation and gene expression. Microbiol Reviews 55:451–458, 1991.

    CAS  Google Scholar 

  33. Antequera F, Boyes J, Bird A. High levels of de novo methylation and altered chromatin stucture at CpG islands in cell lines. Cell 62:503–514, 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Pogribny I, Basnakian A, Miller B et al. Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:1894–1901, 1995.

    PubMed  CAS  Google Scholar 

  35. Sharrard RM, Royds JA, Rogers S, Shorthouse AJ. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer 65:667, 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Gama-Sosa MA, Slagel VA, de Bustros A, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Bedford MT, van Helden PD. Hypomethylation of DNA in pathological conditions of the human prostate, Cancer Res 47:5274–5276, 1987.

    PubMed  CAS  Google Scholar 

  38. Kim Y-I, Giuliano A, Hatch K et al. Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899, 1994.

    Article  PubMed  CAS  Google Scholar 

  39. Laird P, Jackson-Grusby L, Fazeli A, Dickinson S, Jung W et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197–205, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Balaghi M, Wagner C. DNA methylation in folate deficiency: Use of CpG methylase. Biochem Biophys Res Commun 193:1184–1190, 1993.

    Article  PubMed  CAS  Google Scholar 

  41. Kim Y-I, Christman J, Fleet J et al. Moderate folate deficiency does not cause global hypomethylation of hepatic and colonic DNA or c-myc-specific hypomethylation of colonic DNA in rats. Am J Clin Nutr 61:1083–1090, 1995.

    PubMed  CAS  Google Scholar 

  42. Magewu A, Jones P. Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hot spot in human cancer. Molec Cell Biol 14:4225–4232, 1994.

    PubMed  CAS  Google Scholar 

  43. Yunis J, Soreng A. Constitutive fragile sites and cancer. Science 226:1199–1204, 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Green R, Phillips D, Chen A, Reidy J, Ragab A. Effects of folate in culture medium on common fragile sites in lymphocyte chromosomes from normal and leukemic children. Hum Genet 81:9–12, 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Everson R, Wehr C, Erexson G, MacGregor J. Association of marginal folate depletion with increased human chromosomal damage in vivo: Demonstration by analysis of micronucleated erythrocytes. J Natl Cancer Inst 80:525–529, 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Heath C. Cytogenetic observations in vitamin B12 and folate deficiency. Blood 27:800–815, 1966.

    PubMed  CAS  Google Scholar 

  47. Das KC, Mohanty D, Garewal G. Cytogenetics in nutritional megaloblastic anaemia. Acta Haematol 16: 146–154, 1986.

    Google Scholar 

  48. Branda R, Arthur D, Woods W, Danzl T, King R. Folate metabolism and chromosomal stability in the fragile X syndrome. Am J Med 77:602–611, 1984.

    Article  PubMed  CAS  Google Scholar 

  49. Branda R, Blickensderfer D. Folate deficiency increases genetic damage caused by alkylating agents and gamma irradiation in CHO cells. Cancer Res 53:5401–5408, 1993.

    PubMed  CAS  Google Scholar 

  50. Kim Y-I, Pogribny I, Miller J et al. Folate deficiency causes DNA strand breaks within the p53 gene in rat liver. Proceed Amer Assoc Cancer Res 36:A115, 1995.

    Google Scholar 

  51. Bryant P. Enzymatic restriction of mammalian cell DNA using Pvu II and BamH1: Evidence of the double strand break origin of chromosomal aberrations. Int J Radiat Biol 46:57–65, 1984.

    Article  CAS  Google Scholar 

  52. Bryant P. Use of restriction enzymes to study relationships between DNA double strand breaks and other end-points in mammalian cells. Int J Radiat Biol 54: 869–890, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Borek C, Ong A, Morgan W, Cleaver J. Morphological transformation of 10T1/2 mouse embryo cells can be inititiated by DNA double strand breaks alone. Mol Carcinog 4:243–247, 1991.

    Article  PubMed  CAS  Google Scholar 

  54. Bryant P, Riches A. Transformation of murine C3H 10T1/2 cells resulting from DNA double strand breaks induced by a restriction endonuclease. Br J Cancer 60:852–854, 1989.

    Article  PubMed  CAS  Google Scholar 

  55. Zajac-Kaye M, Tso P. DNase I encapsulated in liposomes can indcue neoplastic transformation of Syrian hamster embryo cells in culture. Cell 39:427–437, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Nelson W, Kastan M. DNA strand breaks: The DNA template alterations that trigger p53-dependent DNA damage response pathways. Molec Cell Biol 14:1815–1823, 1994.

    PubMed  CAS  Google Scholar 

  57. Sedwick W, Kutler M, Brown O. Antifolate-induced misincorporation of deoxyuridine monophosphate into DNA: Inhibition of high molecular weight DNA synthesis in human lymphoblastoid cells. Proceed Nat Acad Sci USA 78:917–921, 1981.

    Article  CAS  Google Scholar 

  58. Goulian M, Bleile B, Tseng B. Methotrexate-induced misincorporation of uracil into DNA. Proceed Nat Acad Sci USA 77:1956–1960, 1980.

    Article  CAS  Google Scholar 

  59. Shen J-C, Rideout W III, Jones P. High frequency mutagenesis by a DNA methyltransferase. Cell 71: 1073–1080, 1992.

    Article  PubMed  CAS  Google Scholar 

  60. Baker S, Preisinger A, Jessup J et al. p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res 50: 7717–7722, 1990.

    PubMed  CAS  Google Scholar 

  61. Antequera F, Macleod D, Bird A. Specific protection of methylated CpGs in mammalian nuclei. Cell 58:509–517, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Hansen R, Ellis N, Gartler S. Demethylation of specific sites in the 5′ region of the inactive X-linked human phosphoglycerate kinase gene correlates with the appearance of nuclease sensitivity and gene expression. Molec Cell Biol 8:4692–4699, 1988.

    PubMed  CAS  Google Scholar 

  63. Leteurtre F, Kohlhage G, Fesen M et al. Effects of DNA methylation on topoisomerase I and II cleavage activities. J Biol Chem 269:7893–7900, 1994.

    PubMed  CAS  Google Scholar 

  64. Bestor T. Methylation patterns in the vertebrate genome. J Nat Inst Health Res 5:57–60, 1993.

    Google Scholar 

  65. Meehan R, Lewis J, McKay S, Kleiner E, Bird A. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499, 1989.

    Article  PubMed  CAS  Google Scholar 

  66. Wainfan E, Dizik M, Stender M, Christman J. Rapid appearance of hypomethylated DNA in livers of rats fed cancer-promoting, methyl-deficient diets. Cancer Res 49:4094–4097, 1989.

    PubMed  CAS  Google Scholar 

  67. Newberne P, Rogers A. Labile methyl groups and the promotion of cancer. Annu Rev Nutr 6:407–432, 1986.

    Article  PubMed  CAS  Google Scholar 

  68. Ghoshal A, Farber E. The induction of liver cancer by a dietary deficiency of choline and methionine without added carcinogens. Carcinogenesis 5:1367–1370, 1984.

    Article  PubMed  CAS  Google Scholar 

  69. Dizik M, Christman J, Wainfan E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer-promoting methyl-deficient diet. Carcinogenesis 12:1307–1312, 1991.

    Article  PubMed  CAS  Google Scholar 

  70. Rainier S, Johnson L, Dobry C et al. Relaxation of imprinted genes in human cancer. Nature 362:747–749, 1993.

    Article  PubMed  CAS  Google Scholar 

  71. Barlow D. Methylation and imprinting: From host defense to gene regulation? Science 260:309–310, 1993.

    Article  PubMed  CAS  Google Scholar 

  72. Chandar N, Lombardi B. Liver cell proliferation and incidence of hepatocellular carcinomas in rats fed consecutively a choline-devoid and a choline-supplemented diet. Carcinogenesis 9:259–263, 1988.

    Article  PubMed  CAS  Google Scholar 

  73. Reddy T, Ramanathan R, Shinozuka H, Lombardi B. Effects of dietary choline deficiency on the mutagenic activation of chemical carcinogens by rat liver. Cancer Lett 18:41–48, 1983.

    Article  PubMed  CAS  Google Scholar 

  74. da Costa K, Cochary E, Blusztajn J, Garner S, Zeisel S. Accumulation of 1,2-sn-diacylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline deficient rats. J Biol Chem 268:2100–2105, 1993.

    PubMed  Google Scholar 

  75. Rozengurt E. Early signals in the mitogenic response. Science 234:161–166, 1986.

    Article  PubMed  CAS  Google Scholar 

  76. Kaibuchi K, Tsuda T, Kikuchi A et al. Possible involvement of protein kinase C and calcium ion in growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts. J Biol Chem 261:1187–1192, 1986.

    PubMed  CAS  Google Scholar 

  77. Megidish T, Mazurek N. A mutant protein kinase C that can transform fibroblasts. Nature 342:807–811, 1989.

    Article  PubMed  CAS  Google Scholar 

  78. Baum C, Wali R, Sitrin M, Bolt M, Brasitus T. 1,2 dimethylhydrazine—induced alterations in protein kinase C activity in the rat preneoplastic colon. Cancer Res 50:3915–3920, 1990.

    PubMed  CAS  Google Scholar 

  79. Guillem J, O’Brian C, Fitzer C et al. Altered levels of protein kinase C and Ca+2-dependent protein kinase in human colon carcinomas. Cancer Res 47:2036–2039, 1987.

    PubMed  CAS  Google Scholar 

  80. Sakanoue Y, Hatada T, Kusumoki M, Yanagi H, Yamura T, Utsunomiya J. Protein kinase C activity as a marker for colorectal cancer. Int J Cancer 48:803–806, 1991.

    Article  PubMed  CAS  Google Scholar 

  81. Finkelstein J, Martin J. Methionine metabolism in mammals. J Biol Chem 259:9508–9513, 1984.

    PubMed  CAS  Google Scholar 

  82. Kim Y-I, Miller J, da Costa K-A et al. Severe folate deficiency causes secondary depletion of choline and phosphocholine in rat liver, J Nutr 124:2197–2203, 1994.

    PubMed  CAS  Google Scholar 

  83. Dhur A, Galan P, Hercberg S. Folate status and the immune system. Progr Food Nutr Sci 15:43–60, 1991.

    CAS  Google Scholar 

  84. Trinchieri G. Biology of Natural Killer Cells. Adv Immunol 47:187–376. 1989.

    Article  PubMed  CAS  Google Scholar 

  85. Williams E, Gross R, Newberne P. Effect of folate deficiency on the cell-mediated immune response in rats. Nutr Reports Internat 12:137–148, 1975.

    CAS  Google Scholar 

  86. Jacques P, Riggs K. B vitamins as risk factors for age-related diseases. In: Rosenberg I (ed) Proceedings of the 13 th annual Bristol Myers — Squibb Mead Johnson Nutrition Research Symposium: Nutritional Assessment of Elderly Populations. New York: Raven Press, 1995, pp 234–251.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mason, J.B. (1997). Folate Status: Modulation of Colorectal Carcinogenesis. In: Graham, I., Refsum, H., Rosenberg, I.H., Ueland, P.M., Shuman, J.M. (eds) Homocysteine Metabolism: From Basic Science to Clinical Medicine. Developments in Cardiovascular Medicine, vol 196. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5771-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5771-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7645-3

  • Online ISBN: 978-1-4615-5771-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics