Skip to main content

Actuator Performance and Preliminaries

  • Chapter
Microactuators

Part of the book series: Electronic Materials: Science and Technology ((EMST,volume 4))

  • 222 Accesses

Abstract

Actuators perform useful work on the environment in response to a command or a control signal. The amount of work that they perform and the energy expenditure that they require to do the desired work depend drastically on the method of actuation. These methods can be divided into six categories: electrical, magnetic, thermal/phase, optical, mechanical/acoustic, and chemical /biological.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Tabib-Azar, “Sensor Parameters and Characterization.” In: VCH Handbook series. Volume I; Fundamentals. Edited by W. H. Ko and T. Grandke, pp. 18–42 (1990).

    Google Scholar 

  2. H. N. Norton, Handbook of Transducers. Prentice Hall, Englewood Cliffs, NJ (1989).

    Google Scholar 

  3. A. Garcia, and M. Tabib-Azar, “Sensing Means and Sensor Shells: A New Method of Comparative Study of Piezoelectric, Piezoresistive, Electrostatic, Magnetic, and Optical Sensors.” Sensors and Actuators A. Physical Vol. 48(2), pp. 87–100 (1995).

    Article  Google Scholar 

  4. M. Tabib-Azar, Integrated Optics. Microstructures and Sensors. Kluwer Academic Publishings, Boston, MA (1995).

    Chapter  Google Scholar 

  5. K. L. Chopra, Thin Film Phenomena. R. E. Krieger Publishing Company, Malabar, Florida, p.p. 10–42 (1985).

    Google Scholar 

  6. A. P. Boresi, and O. M. Sidebottom, Advanced Mechanics of Materials. Fourth edition, John Wiley, New York, (1984).

    Google Scholar 

  7. J. D. Ferry, Viscoelastic Properties of Polymers. Third edtition, John Wiley & Sons, p.p. 11–14 (1980).

    Google Scholar 

  8. M. Tabib-Azar, “Optically Controlled Silicon Microactuators.” Nanotechn. 1, p.p.81 (1990).

    Article  Google Scholar 

  9. M. Tabib-Azar and J. S. Leane, “Direct Optical Control for a Silicon MicroActuator.” Sensors and Actuators, Vol. A(21), p.p. 229–235 (1989).

    Google Scholar 

  10. J. J. Sniegowski, H. Guckel, and T.R. Christenson, “Performance Characteristics of Second Generation Polysilicon Resonating Beam Force Transducers.” Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, IEEE Publ. # 90CH2783-9, p.p. 9–12 (1990).

    Google Scholar 

  11. R. T. Howe, R. S. Muller, “Resonant-Microbridge Vapor Sensor.” IEEE Trans. Electron Devices, Vol. ED-33(4), p.p. 499–506 (1986).

    Article  Google Scholar 

  12. X. Ding, W.H. Ko, and J. Mansour, “Residual and Mechanical Properties of Boron-doped p+-Silicon Films.” Sensors and Actuators, A21-A23, p.p. 866–871 (1990).

    Google Scholar 

  13. J. Y. Pan, P. Lin, F. Maseeh, and S.D. Senturia, “Verification of FEM Analysis of Load-Deflection Methods for Measuring Mechanical Properties of Thin Films.” Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, IEEE Publ. # 90CH2783-9, p.p. 70–73 (1990).

    Google Scholar 

  14. T.S.J. Lammerink, and W. Wlodarski, “Integrated Thermally Excited Resonant Diaphragm Pressure Sensor.” Transducers ′85, IEEE Publication # 85CH2127-9, p.p. 97–100

    Google Scholar 

  15. K. Petersen, “Dynamic Micromechanics on Silicon: Techniques and Devices.” IEEE Transaction on Electron Devices, Vol. ED-25(10), p.p. 1241–1250 (1978).

    Article  Google Scholar 

  16. K. Petersen, “Silicon as Mechanical Material.” Proc. IEEE, Vol. 70(5), p.p. 420–457 (1982).

    Article  Google Scholar 

  17. M. Tabib-Azar, K. Wong, and W. Ko, “Aging Phenomena in Heavily Doped (p+) Micromachined Silicon Cantilever Beams.” Sensors and Actuators A Vol. 33, p.p. 199–206 (1992).

    Article  Google Scholar 

  18. D. Sarid, Scanning Force Microscopy. Oxford University Press, New York, p. 16 (1991).

    Google Scholar 

  19. M. A. Neifeld, M. Tabib-Azar, Pin-Ju Hsiang, and Augusto Garcia-Valenzuela, “Silicon Smart Spatial Light Modulators for Optical Computing.” Presented at the Optical Society of America 1992 Annual Meeting in Albuquerque, New Mexico.

    Google Scholar 

  20. K. Gabriel, F. Behi, R. Mahadevan and M. Mehregany, “In Situ Friction and Wear Measurements in Integrated Polysilicon Mechanisms.” Sensors and Actuators, A21-A23, pp. 184–188 (1990).

    Google Scholar 

  21. Y.-C. Tai and R. S. Muller, “IC-Processed Electrostatic Synchronous Micromotors.” Sensors and Actuators, Vol. 20, pp. 49–55 (1989).

    Article  Google Scholar 

  22. S. K. Ghandhi, VLSI Fabrication Principles. John Wiley, New York, p.p.427–429 (1983).

    Google Scholar 

  23. W.D. Westwood, “Physical Vapor Deposition.” In: Microelectronic Materials and Processes. Editor: R.A. Levy, p.p. 133–195 (1986).

    Google Scholar 

  24. Y. Pauleau, “Interconnect Materials.” In: Microelectronic Materials and Processes. Editor: R.A. Levy, Kluwer Academic Publishers, Boston MA, p.p. 642–644 (1986).

    Google Scholar 

  25. Page 510-514 of [22].

    Google Scholar 

  26. E. G. Spencer and P.H. Schmidt, “Ion-Beam Techniques for Device Fabrication.” J. Vac. Sci. Technol. Vol. 8, S52 (1971).

    Article  Google Scholar 

  27. J. D. Mackenzie, and D. R. Ulrich, “Sol-Gel Optics, Present Status and Future Trends.” Proc. of SPIE Conf. on Sol-Gel Optics, Vol. 1328, p.p. 2–13 (1990).

    Article  Google Scholar 

  28. B. D. Fabes, et al., “Laser Processing of Channel Waveguide Structures in Sol-Gel Coatings.” Proc. of SPIE on Sol-Gel Optics, Vol. 1328, p.p. 319–328 (1990).

    Article  Google Scholar 

  29. J. D. Mackenzie, Proc. of SPIE, Vol. 878, p. 128 (1988).

    Article  Google Scholar 

  30. K. Heuberger and W. Lukosz, “Embossing Technique for Fabricating Surface Relief Gratings on Hard Oxide Waveguides.” Applied Optics, Vol. 25(9), p.p. 1499–1504 (1986).

    Article  Google Scholar 

  31. D. W. Hewak. and J. W. Y. Lit, “Fabrication of Tapers and Lenslike Waveguides by a Microcontrolled Dip Coating Procedure.” Applied Optics, Vol. 27(21), p.p. 4562–4564 (1988).

    Article  Google Scholar 

  32. W. Kern, “Chemical Vapor Deposition.” In: Microelectronic Materials and Processes. Editor: R.A. Levy, p.p. 203–240 (1986).

    Google Scholar 

  33. L. Esaki, “A Bird’s-Eye View on the Evolution of Semiconductor Superlattices and Quantum Wells.” IEEE Journal of Quantum Electronics, Vol. QE-22(9), p.p. 1611–1624 (1986).

    Article  Google Scholar 

  34. M. Fogiel, Modern Microelectronic. Research and Education Association, New York, p.p. 405–407 (1981).

    Google Scholar 

  35. H. Seidel, “The Mechanism of Anisotropic Silicon Etching and Its Relevance for Micromachining.” In Microsensors. Edited by R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, and R.M. White, IEEE Press Selected Reprint Series, p.p. 104–109 (1990).

    Google Scholar 

  36. B. Kloeck, et al., “Study of Electrochemical Etch-Stop for High-Precision Thickness Control of Silicon Membranes.” IEEE Transactions on Electron Devices, Vol. 36(4), p.p. 663–669 (1989).

    Article  Google Scholar 

  37. G.K. Herb, “Plasma Etching Technology-An Overview.” In: Plasma Etching: An Introduction. Edited by D. M. Manos, and D.L. Flamm, Academic Press, Inc., p.p. 1–87 (1989).

    Google Scholar 

  38. R. T. Howe, “Surface Micromachining for Microsensors and Microactuators.”. Vac. Sci. Technol. B, Vol. 6(6), p.p. 1809–1813 (1988).

    Article  MathSciNet  Google Scholar 

  39. E. Obermeier, P. Kopstynski, and R. Niebl, “Characteristics of Polysilicon Layers and Their Application in Sensors.” In Microsensors. Edited by R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, and R.M. White, IEEE Press Selected Reprint Series, p.p. 83–86 (1990).

    Google Scholar 

  40. S. Sugiyama, et al., “MicroDiaphragm Pressure Sensor.” IEEE International Devices Meeting, p.p. 184–187 (1986).

    Google Scholar 

  41. X-P. Wu, and W.H. Ko, “Compensation Corner Undercutting in Anisotropie Etching of (100) Silicon.” Sensors and Actuators, Vol. 18, p.p. 207–215 (1989).

    Article  Google Scholar 

  42. J.H. Jerman, D. J. Clift, and S.R. Mallinson, “A Miniature Fabry-Perot Interferometer with Corrugated Silicon Diaphragm Support.” Technical Digest of IEEE Solid-State Sensor and Actuator Workshop, IEEE Publ. # 90CH2783-9, p.p. 140–144 (1990).

    Google Scholar 

  43. M. Mehregany, “Silicon Microactuators.” In: Advances in Actuators. Edited by: A. P. Dorey and J.H. Moore, IOP Publication, Philadelphia, pp. 135–170 (1995).

    Google Scholar 

  44. S. Akamine, T. R. Albrecht, M. J. Zdwblick and C. F. Quate, “A Planar Process for Microfabrication of a Scanning Tunneling Microscope.” Sensors and Actuators, A21-A23, pp. 964–970 (1990).

    Google Scholar 

  45. P. Murait, et. al., “Fabrication and Characterization of PZT Thin-Film Vibrators for Micromotors.” Sensors and Actuators A 48, pp. 157–165 (1995).

    Article  Google Scholar 

  46. M. C. Wu, L. Y. Lin, and S.S. Lee, “Micromachined Free-Space Integrated Optics.” Proc. of SPIE Conf. on Integrated Optics and Microstructures II, eds: M. Tabib-Azar, D. Polla, and K.K. Wong, Vol. 2291, p.p. 40–51 (1994).

    Google Scholar 

  47. H. Guckel, K. J. Skrobis, T.R. Christenson, J. Klein, “Micromechanics for Actuators via Deep X-Ray Lithography.” SPIE, Vol. 2194, pp. 2–10 (1994).

    Article  Google Scholar 

  48. H. Guckel. et. al., “Deep-X-Ray and UV Lithographies for Micromechanics.” IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, pp. 117–122 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tabib-Azar, M. (1998). Actuator Performance and Preliminaries. In: Microactuators. Electronic Materials: Science and Technology, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5445-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5445-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8089-4

  • Online ISBN: 978-1-4615-5445-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics