Skip to main content

Activation Mechanism of Pepsinogen as Compared to the Processing of HIV Protease gag-pol Precursor Protein

  • Chapter
Aspartic Proteinases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 436))

Abstract

The structural evidence suggests that the eukaryotic aspartic proteases and the retroviral proteases are related in three-dimensional structures and in their evolution. The internal two-fold structural homology between the two lobes of the eukaryotic aspartic proteases (Tang et al., 1978) is similar to the homodimeric structure of HIV (Wlodawer et al., 1989) and other retroviral proteases. Also, the folding topology of individual lobes in eukaryotic aspartic proteases is related to that of the retroviral enzyme monomers (Rao et al., 1991). It is now well established that these two groups of proteases share active-site structure and catalytic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Al-Janabi, J., Hartsuck, J.A. and Tang, J. (1972) “Kinetics and Mechanism of Pepsinogen Activation” J. Biol. Chem. 247: 4628–4632.

    PubMed  CAS  Google Scholar 

  • Bustin, M. and Conway-Jacobs, A. (1971) “Intramolecular Activation of Porcine Pepsinogen” J. Biol. Chem. 246: 615–620.

    PubMed  CAS  Google Scholar 

  • Co, E., Koelsch, G., Lin, Y., Ido, E., Hartsuck, J. A. and Tang, J. (1994) “Proteolytic Processing Mechanisms of a Miniprecursor of the Aspartic Protease of Human Immunodeficiency Virus Type 1” Biochemistry 33: 1248–1254.

    Article  PubMed  CAS  Google Scholar 

  • Dyke, C.W. and Kay, J. (1976) “Conversion of Pepsinogen into Pepsin is not a One-Step Process” Biochem. J. 153: 141–144.

    Google Scholar 

  • Glick, D.M., Auer, H.E., Rich, D.H., Kawai, M. and Kamath, A. (1986) “Pepsinogen Activation: Genesis of the Binding Site” Biochemistry 25: 18158–18164.

    Article  Google Scholar 

  • Hartsuck, J. A., Koelsch, G. and Remington, S.J. (1992) “The High Resolution Crystal Structure of Porcine Pepsinogen” Proteins 13: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Ido, E., Han, H.-P., Kezdy, F.J. and Tang, J. (1991) “Kinetic Studies of Human Immunodeficiency Virus Type 1 Protease and its Active-Site Hydrogen Bond Mutant A28S” J. Biol. Chem. 266: 24359–24366.

    PubMed  CAS  Google Scholar 

  • James, M.N.G. and Sielecki, A.R. (1986) “Molecular Structure of an Aspartic Proteinase Zymogen, Porcine Pepsinogen, at 1.8 Å Resolution” Nature 319: 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Kageyama, T., Ichinose, M., Miki, K., Athauda, S.B., Tanji, M. and Takahashi, K. (1989) “Difference of Activation Processes and Structure of Activation Peptides in Human Pepsinogen A and Progastricsin” J. Biochem. (Tokyo) 105: 15–22.

    CAS  Google Scholar 

  • Kageyama, T. and Takahashi, K. (1983) “Occurrence of Two Different Pathways in the Activation of Porcine Pepsinogen to Pepsin” J. Biochem. 93: 743–754.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X.L., Koelsch, G., Loy, J.A. and Tang, J. (1995) “Rearranging the Domains of Pepsinogen” Protein Science 4: 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X.L., Lin, Y.Z., Koelsch, G., Gustchina, A., Wlodawer, A. and Tang, J. (1992) “Enzymic Activities of Two-Chain Pepsinogen, Two-Chain Pepsin, and the Amino-Terminal Lobe of Pepsinogen” J. Biol. Chem. 261. 17257–17263.

    Google Scholar 

  • Louis, J.M., Nashed, N.T., Parris, K.D., Kimmel, A.R. and Jerina, D.M. (1994) “Kinetics and Mechanism of Auto-Processing of Human Immunodeficiency Virus Type 1 Protease from an Analog of the Gag-pol Polypro-tein” Proc. Natl. Acad. Sei. USA 91: 7970–7974.

    Article  CAS  Google Scholar 

  • Marciniszyn, J., Jr., Huang, J.S., Hartsuck, J.A. and Tang, J. (1976) “Mechanism of Intramolecular Activation of Pepsinogen” J. Biol. Chem. 251: 7095–7102.

    PubMed  CAS  Google Scholar 

  • McPhie, P. (1972) “Pepsinogen: Activation by a Unimolecular Mechanism” Biochem. Biophys. Res. Commun. 56: 789–792.

    Article  Google Scholar 

  • Nermut, M.V., Hockley, D.J., Jewett, J.B.M., Jones, I.M., Garreua, M. and Thomas, D. (1994) “Fullerene-like Organization of HIV gag-protein Shell in Virus-like Particles Produced by Recombinant Baculovirus” Virology 198: 288–296.

    Article  PubMed  CAS  Google Scholar 

  • Rao, J.K.M., Erickson, J.W. and Wlodawer, A. (1991) “Structural and Evolutionary Relationships Between Retroviral and Eucaryotic Aspartic Proteinases” Biochemistry 30: 4663–4671.

    Article  PubMed  CAS  Google Scholar 

  • Sanny, CG., Hartsuck, J.A. and Tang, J. (1975) “Conversion of Pepsinogen to Pepsin. Further Evidence for Intramolecular and Pepsin-Catalyzed Activation” J. Biol. Chem. 250: 2635–2639.

    PubMed  CAS  Google Scholar 

  • Tang, J. and Hartsuck, J.A. (1995) “A Kinetic Model for Comparing Proteolytic Processing Activity and Inhibitor Resistance Potential of Mutant HIV-1 Protease” FEBS Letters 367: 112–116.

    Article  PubMed  CAS  Google Scholar 

  • Tang, J., James, M.N.G., Hsu, I.N., Jenkins, J.A. and Blundell, T.L. (1978) “Structural Evidence for Gene Duplication in the Evolution of the Acid Protease” Nature 271: 618–621.

    Article  PubMed  CAS  Google Scholar 

  • Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J. and Kent, S.B.H. (1989) “Conserved Folding in Retroviral Proteases: Crystal Structure of a Synthetic HIV-1 Protease” Science 245: 616–621.

    Article  PubMed  CAS  Google Scholar 

  • Wondrak, E.M., Nashed, N.T., Baber, M.T., Jerina, D.M. and Louis, J.M. (1996) “A Transient Precursor for the HIV-1 Protease, Isolation, Characterization and Kinetics of Maturation” J. Biol. Chem. 271: 4477–4481.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koelsch, G., Loy, J., Lin, X., Tang, J. (1998). Activation Mechanism of Pepsinogen as Compared to the Processing of HIV Protease gag-pol Precursor Protein. In: James, M.N.G. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 436. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5373-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5373-1_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7452-7

  • Online ISBN: 978-1-4615-5373-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics