Skip to main content

Nicotinic Receptors as a new Target for Treatment of Alzheimer’s Disease

  • Chapter
Progress in Alzheimer’s and Parkinson’s Diseases

Abstract

The neuronal nicotinic acetylcholine receptors (nAChRs) show rich abundance in human brain. Three nAChR binding sites with super-high, high and low affinities have been identified using nicotinic agonists with different receptor affinity (Nordberg et al. 1988, Warpman and Nordberg 1995). Molecular biology studies have identified eight nAChR subunits (β2-a9, β2-β4) in rodent brain and seven nAChR subunits (a3-a5, a7, β2-β4) in human brain (Sargent et al. 1993). Different combinations of a and β subunits can form different nAChR subtypes in pentaineric structures which upon activation elicit varying physiological and pharmacological effects (McGee and Role 1995, Zhang and Nordberg 1995). The a4β2 nAChR subtype is considered to be the most common in rodent brain (Flores et al. 1992). Whether this is also the case in human brain has to be proven. It has recently been suggested that the presynaptic modulation of transmitter release may represent a major function of the nAChRs (McGee et al. 1995, Wonnacott 1997). The nAChRs may play a modulatory role for several neurotransmitters in brain (Figure 1). It is quite possible that the nAChRs can be tuned regarding channel opening time, agonists sensitivity and densitization properties to fulfil the requirements for a certain neurotransmitter and brain region. Figure 1 shows some examples of transmitters that appear to be regulated by presynaptic nAChRs. The nAChR subunits may differ between different regions of the brain as well as transmitter systems. Thus the presynaptic nAChR regulating dopamine release appears to contain the <x4 subunit (Wonnacott 1997), while the a7 nAChR subunit seem to facilitate the release of glutamate (Gray et al. 1996) (Figure 1). The occurence of more than one nAChR subtype presynaptically might be possible and is therefore an important issue to explore when focusing on drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Akaike, A., Tamura, Y., Yokota, T., Shimohama, S., and Kimura, J., 1994, Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res. 644:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Albuquerque, E.X., Manickavasagom, A., Pereira, E.F.R., Castro, N.G., Schrattenholz, A., Barbosa, C.T.F., Bon-fante-Carbarcas, R., Aracava, Y., Eisenberg, H.M., and Maelicke A., 1997, Properties of neuronal nicotinic acetylcholine receptors: pharmacological characterization and modulation of synpatic function. J. Pharmacol. Exp. Then 280:1117–1136.

    CAS  Google Scholar 

  • Corder, E.H., Jelic, V., Basun, H., Lannfelt, L., Valind, S., Winblad, B., and Nordberg, A., 1997, No difference in cerebral glucose metabolism in Alzheimer patients with differing apolipoprotein E genotype. Arch. Neurol. 54:273–277.

    Article  PubMed  CAS  Google Scholar 

  • Corder, E.H., Saunders A.M., and Strittmatter W.J. et al., 1993, Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly-Roberts, D.L., Xue, I.C., Arneric, S.P., and Sullivan, J.P., 1996, In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. Brain Res. 719:36–44.

    Article  PubMed  CAS  Google Scholar 

  • Flores, C.M., Rogers, S.W., Pabreza L.A., Wolfe B.B., and Keller, K.J., 1992, A subtype of nicotinic cholinergic receptor in brain is composed of a4 and β2 subunits and is upregulated by chronic nicotine treatment. Mol. Pharmacol. 41:31–37.

    PubMed  CAS  Google Scholar 

  • Gray S., Rajan A.S., Radcliffe K.A., Yakehiro M., and Dani J.A., 1996, Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716.

    Article  PubMed  CAS  Google Scholar 

  • Hellström-Lindahl E., Zhang X., and Nordberg A., Expression of nicotinic receptor subunit mRNAs in lymhocytes from normal and Alzheimer patients. Alzheimer’s Research, in press.

    Google Scholar 

  • McGehee, D.S., Heath M.J.S., Gelber S., Deway P., and Role L.W., 1995, Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696.

    Article  PubMed  CAS  Google Scholar 

  • McGehee, D.S., and Role, L.W., 1995, Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Ann. Rev. Physiol. 57:521–546.

    Article  CAS  Google Scholar 

  • Newhouse, P.A., Potter, A., Corwin, J., and Lenox, R., 1994, Modeling of the nicotinic receptor loss in dementia using the nicotinic antagonist mecamylamine: Effects on human cognitive functioning. Drug Dev. Res. 31:71–79.

    Article  CAS  Google Scholar 

  • Nordberg, A., Adem, A., Hardy J. and Winblad B., 1988, Change in nicotinic receptor subtypes in temporal cortex of Alzheimer brains. Neurosci. Lett. 86:317–321.

    Article  PubMed  CAS  Google Scholar 

  • Nordberg, A., Lilja, A., Lundqvist, H., Hartvig, P., Amberia, K., Viitanen, M., Warpman, U., Johansson, M., Hell-ström-Lindahl, E., Bjurling, P., Fasth, K.J., Långström, B., and Winblad, B., 1992, Tacrine restores cholin-ergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography. Neurobiol. Aging 13:747–758.

    Article  PubMed  CAS  Google Scholar 

  • Nordberg, A., Lundqvist, H., Hartvig, P., Andersson, J., Johansson, M., Hellström-Lindahl, E. and Långström, B., 1997, Imaging of nicotinic and muscarinic receptors in Alzheimer’s diseasexffect of tacrine treatment. Dement. Geriatr. Cogn. Disord. 8:78–84.

    Article  PubMed  CAS  Google Scholar 

  • Nordberg, A., Lundqvist, H., Hartvig, P., Lilja, A., and Långström, B., 1995, Kinetic analysis of regional (S)(−)11 c-nicotine binding in normal and Alzheimer brains-in vivo assessment using positron emission tomography. Alzheimer Dis. Assoc. Disord. 9:21–27.

    Article  PubMed  CAS  Google Scholar 

  • Nordberg, A., and Winblad, B., 1986, Reduced number of 3H-nicotine and 3H-acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci. Lett. 72:115–119.

    Article  PubMed  CAS  Google Scholar 

  • Ohm, T.G., Kirca, M., Bohl, J., Scharnagl, H., Gross, W., and März, W., 1995, Apolipoprotein E polymorphism influences not only cerebral plaque load but also Alzheimer-type neuroflbrillary tangle formation. Neuroscience 66:583–587.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, J., Delisle, M.C., Quirion, R., Aubert, I., Farlow, M., Lahiri, D., Hui, S., Bertrand, P., Nalbantoglu, J., Gil-fix, B.M., and Gauthier, S., 1995, Apolipoprotein E4 allele as a predictor of cholinergic deficit and treatment outcome in Alzheimer disease. Proc. Natl. Acad. Sci. 92:12260–12264.

    Article  PubMed  CAS  Google Scholar 

  • Peng, X., Gerzanich, V., Anand, R., Whiting, P., and Lindstrom, J., 1994, Nicotine-induced increase in neuronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol. Pharmacol. 46:523–530.

    PubMed  CAS  Google Scholar 

  • Polvikoski, T., Sulkava, R., Haltia, M., Kainulainen, K., Vourio, A., Verkkoniemi, A., Niinisto, L., Halonen, P., and Kontula, K., 1995, Apolipoprotein E, dementia and cortical deposition of β-amyloid protein. N. Engl. J. Med. 333:1242–1247.

    Article  PubMed  CAS  Google Scholar 

  • Sargent, P.B., 1993, The diversity of neuronal nicotinic acetylcholine receptors. Ann. Rev. Neurosci. 16:403–433.

    Article  PubMed  CAS  Google Scholar 

  • Sahakian, B., Jones, G., Levy, R., Gray, J., and Warburton, D., 1989, The effects of nicotine on attention, information processing, and short-term memory in patients with dementia of Alzheimer’s type. Br. J. Psychiatry 154:797–800.

    Article  PubMed  CAS  Google Scholar 

  • Salmon, A.R., Marcinowski, K.J., Friedland, R.P., and Zagorski, M.G., 1996, Nicotine inhibits amyloid formation by the β-peptide. Biochemistry 35:13568–13578.

    Article  Google Scholar 

  • Soininen, H., Kosunen, O., Helisalmi, S., Mannermaa, A., Paljärvi, L., Talasniemi, S., Ryynänen M., and Riekkinen, Sr. P., 1995, A severe loss of choline acetyltransferase in the frontal cortex of Alzheimer patients carrying apolipoprotein e4 allele. Neurosci. Lett. 187:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, A-L., and Nordberg, A., 1997, Interaction of tacrine, galanthamine, NXX-066 and E2020 with neuronal α4β2 nicotinic receptors expressed in fibroblast cells. In: Alzheimer’s Disease: Biology, Diagnosis and Therapeutics, K. Iqbal, B. Winblad, T. Nishimura, M. Takeda, H.M. Wisniewski, eds., John Wiley & Sons, Chichester, pp. 751–756.

    Google Scholar 

  • Svensson, A-L., and Nordberg, A., 1996, Tacrine interacts with an allosteric activator site on α4β2 nAChRs in MIO cells. NeuroReport 7:2201–2205.

    Article  PubMed  CAS  Google Scholar 

  • Warburton, D.M., Rusted, J.M., and Fowler, J., 1992, A comparison of the attentional and consolidation hypotheses for the facilitation of memory by nicotine. Psychopharmacology 108:443–447.

    Article  PubMed  CAS  Google Scholar 

  • Warpman, U., and Nordberg, A., 1995, Epibatidine and ABT 418 reveal selective losses of α4β2 nicotinic receptors in Alzheimer brains. NeuroReport 6:2419–2423.

    Article  PubMed  CAS  Google Scholar 

  • Wickelgren, I., 1997, Estrogen stakes claim to cognition. Science 276:675–678.

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott, S., 1997, Presynaptic nicotinic ACh receptors. TINS 20:92–98.

    PubMed  CAS  Google Scholar 

  • Zhang, X., Gong, Z-H., Hellström-Lindahl, E., and Nordberg, A., 1994, Regulation of α4β2 nicotinic acetylcholine receptors in M10 cells following treatment with nicotinic agents. NeuroReport 6:313–317.

    Article  Google Scholar 

  • Zhang, X., and Nordberg, A., Characterization of nicotinic acetylcholine receptors in brain. In: Brain Imaging of Nicotine and Tobacco Smoking, E.F. Domino, ed., NPP Books, Ann Arbor, pp. 59–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nordberg, A. et al. (1998). Nicotinic Receptors as a new Target for Treatment of Alzheimer’s Disease. In: Fisher, A., Hanin, I., Yoshida, M. (eds) Progress in Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5337-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5337-3_66

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7435-0

  • Online ISBN: 978-1-4615-5337-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics