Skip to main content

Glio-Neuronal Interactions in Retinal Development

  • Chapter
Development and Organization of the Retina

Abstract

Müller cells have been found in the retinae of all vertebrates where they constitute the dominant type of macroglia. They have a bipolar morphology (“radial glia”) with their vitread (inner) trunk terminating in a conical endfoot adjacent to the vitreous body, and their opposite end extending apical microvilli into the subretinal space which is a main source of nutrients and oxygen delivered by the choriocapillary circulation. In the adult retina, their side branches form elaborate sheaths around neuronal somata, dendrites and synapses, and fascicles of optic axons (cf. Reichenbach and Robinson, 1995a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R. and Hatlee, M., 1989, Plasticity and differentiation of embryonic retinal cells after terminal mitosis. Science 243: 391–393.

    Article  PubMed  CAS  Google Scholar 

  • Aiello, L. P., Avery, R. L., Arrigg, P. G., Keyt, B.A., Jampel, H. D., Shah, S. T., Thieme, H., Iwamoto, M. A., Park, J. E., Nguyen, H. V., Aiello, L. M., Ferrara, N. and King, G. L., 1994, Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331: 1480–1487.

    Article  PubMed  CAS  Google Scholar 

  • Alexiades, M. R. and Cepko, C. L., 1997, Subsets of retinal progenitors display temporally regulated and distinct biases in the fates of their progeny. Development 124: 1119–1131.

    PubMed  CAS  Google Scholar 

  • Altshuler, D., Loturco, J. J., Rush, J. and Cepko, C., 1993, Taurine promotes the differentiation of a vertebrate retinal cell type in vitro. Development 119: 1317–1328.

    PubMed  CAS  Google Scholar 

  • Ames, A. III, Li, Y. Y., Heher, E. C. and Kimble, C. R., 1992, Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J. Neurosci. 12: 840–853.

    PubMed  CAS  Google Scholar 

  • Amin, R. H., Frank, R. N., Kennedy, A., Eliott, D., Puklin, J. E. and Abrams, G. W., 1997, Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 38: 36–47.

    PubMed  CAS  Google Scholar 

  • Anchan, R. M. and Reh, T. A., 1995, Transforming growth factor-beta-3 is mitogenic for rat retinal progenitor cells in vitro. J. Neurobiol. 28: 133–145.

    Article  PubMed  CAS  Google Scholar 

  • Armson, P. F., Bennet, M. R. and Raju, T. R., 1987, Retinal ganglion cell survival and neurite regeneration requirements: the change from Müller cell dependence to superior colliculi dependence during development. Dev. Brain Res. 32:207–216.

    Article  Google Scholar 

  • Barbour, B., Brew, H., and Attwell, D., 1991, Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. J. Physiol. (Lond.) 436: 169–193.

    CAS  Google Scholar 

  • Barr, H. A., Lugg, M. A. and Nicholas, T. E., 1980, Cortisone and Cortisol in maternal and fetal blood and in amniotic fluid during the final ten days of gestation in the rabbit. Biol. Neonate 38: 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Berka, J. L., Stubbs, A. J., Wang, D. Z. M., DiNicolantonio, R., Alcorn, D., Campbell, D. J. and Skinner, S. L., 1995, Renin-containing Müller cells of the retina display endocrine features. Invest. Ophthalmol. Vis. Sci. 36: 1450–1458.

    PubMed  CAS  Google Scholar 

  • Biedermann, B., Eberhardt, W. and Reichelt, W., 1994, GABA uptake into isolated retinal Müller glial cells of the guinea pig detected electrophysiologically. Neuroreport 5: 438–440.

    Article  PubMed  CAS  Google Scholar 

  • Bignami, A. and Dahl, D., 1979, The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to glial fibrillary acidic (GFA) protein. Exp. Eye Res. 28: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Braisted, J. E., Essman, T. F. and Raymond, P. A., 1994, Selective regeneration of photoreceptors in goldfish retina. Development 120: 2409–2419.

    PubMed  CAS  Google Scholar 

  • Bringmann, A., Faude F., and Reichenbach, A., 1997a, Mammalian retinal glial (Müller) cells express large-conductance Ca2+-activated K+ channels that are modulated by Mg2+ and pH, and activated by protein kinase A. Glia 19: 311–323.

    Article  PubMed  CAS  Google Scholar 

  • Bringmann, A., Skatchkov, S. N., Biedermann, B., Faude F., and Reichenbach, A., 1997b, Alterations of potassium channel activity in retinal Müller glial cells induced by arachidonic acid. Submitted to Neuroscience.

    Google Scholar 

  • Browman, H. I. and Hawryshyn, C. W., 1994, Retinoic acid modulates retinal development in the juveniles of a teleost fish. J. exp. Biol. 193: 191–207.

    PubMed  CAS  Google Scholar 

  • Calvaruso, G., Vento, R., Taibi, G., Giuliano, M. and Tesoriere, G., 1992, A factor derived from chick embryo retina which inhibits DNA synthesis of retina itself. Neurochem. Res. 17: 1041–1048.

    Article  PubMed  CAS  Google Scholar 

  • Cepko. C. L., 1993, Retinal cell fate determination. Progr. Retinal Res. 12: 1–12.

    Article  Google Scholar 

  • Chan-Ling, T., 1994, Glial, neuronal and vascular interactions in the mammalian retina. Progr. Retinal Res. 13: 357–389.

    Article  Google Scholar 

  • Chan-Ling, T., Bock, B. and Stone, J., 1995, The effect of oxygen on vasoformative cell division — evidence that ‘physiological hypoxia’ is the stimulus for normal retinal vasculogenesis. Invest. Ophthalmol. Vis. Sci. 36: 1201–1214.

    PubMed  CAS  Google Scholar 

  • Chao, T. I., Grosche, J., Friedrich, K. J., Biedermann, B., Francke, M., Pannicke, T., Reichelt, W., Wulst, M., Mühle, C., Pritz-Hohmeier, S., Kuhrt, H., Faude, F., Drommer, W., Kasper, M., Buse, E. and Reichenbach, A., 1997, Comparative studies on mammalian Müller (retinal glial) cells. J. Neurocytol., in press.

    Google Scholar 

  • Chao, T. I., Henke, A., Reichelt, W., Eberhardt, W., Reinhardt-Maelicke, S., and Reichenbach, A., 1994, Three distinct types of voltage-dependent K+ channels are expressed by Müller (glial) cells of the rabbit retina. Pflüger’s Arch. 426: 51–60.

    Article  CAS  Google Scholar 

  • Chase, J., 1982, The evolution of retinal vascularization in mammals. A comparison of vascular and avascular retinae. Ophthalmology 89: 1518–1525.

    PubMed  CAS  Google Scholar 

  • Craft, J. L., Fulton, A. B., Silver, J., and Albert, D. M., 1983, Development of the outer plexiform layer in albino rats. Curr. Eye Res. 2: 295–299.

    Article  CAS  Google Scholar 

  • Daniels, M. P., and Vogel, Z., 1980, Localization of alpha-bungarotoxin binding sites in synapses of the developing chick retina. Brain Res. 201: 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Datum, K.-H. & Zrenner, E., 1991, Angiotensin-like immunoreactive cells in the chicken retina. Exp. Eye Res. 53: 157–165.

    Article  PubMed  CAS  Google Scholar 

  • DeCurtis, I. and Reichardt, L. F., 1993, Function and spatial distribution in developing chick retina of the laminin receptor alpha-6-beta-l and its isoforms. Development 118: 377–388.

    CAS  Google Scholar 

  • Dorsky, R. I., Chang, W. S., Rapaport, D. H. and Harris, W. A., 1997, Regulation of neuronal diversity in the Xenopus retina by delta signalling. Nature 385: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Dorsky, R. I., Rapaport, D. H. and Harris, W. A., 1995, Xotch inhibits cell differentiation in the Xenopus retina. Neuron 14: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Dowling, J. E., 1987, The Retina. An Approachable Part of the Brain. Harvard Univ. Press, Cambridge, Massachusetts & London.

    Google Scholar 

  • Drazba, J., and Lemmon, V., 1990, The role of cell adhesion molecules in neurite outgrowth on Müller cells. Dev. Biol. 138: 82–93.

    Article  PubMed  CAS  Google Scholar 

  • Egensperger, R., Maslim, J., Bisti, S., Holländer, H. and Stone, J., 1996, Fate of DNA from retinal cells dying during development: uptake by microglia and macroglia (Müller cells). Dev. Brain Res. 97: 1–8.

    Article  CAS  Google Scholar 

  • Eichner, D. and Themann, H., 1962, Zur Frage des Netzhautglykogens beim Meerschweinchen. Z. Zellforsch. 56: 231–246.

    Article  PubMed  CAS  Google Scholar 

  • Elschnig, A., 1913, Zur Anatomie des menschlichen Albionoauges. Graefes Arch. Ophthalmol. 84: 401–419.

    Article  Google Scholar 

  • Erickson, P. A., Fisher, S. K., Anderson, D. H., Stern, W. H., and Borgulla, G. A., 1983, Retinal detachment in the cat: the outer nuclear and outer plexiform layers. Invest. Ophthalmol. Vis. Sci. 24: 927–942.

    PubMed  CAS  Google Scholar 

  • Ezzeddine, Z. D., Yang, X., DeChiara, T., Yancopoulos, G. and Cepko, C. L., 1997, Postmitotic cells fated to be rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124: 1055–1067.

    PubMed  CAS  Google Scholar 

  • Fisher, S. K., Erickson, P. A., Lewis, G. P. and Anderson, D. H., 1991, Intraretinal proliferation induced by retinal detachment. Invest. Ophthalmol. Vis. Sci. 32: 1739–1748.

    PubMed  CAS  Google Scholar 

  • Fleischer-Lambropoulos, E., Kazazoglou, T., Geladopoulos, T., Kentroti, S., Stefanis, C. and Vernadakis, A., 1996, Stimulation of glutamine synthetase activity by excitatory amino acids in astrocyte cultures derived from aged mouse cerebral hemispheres may be associated with non-N-Methyl-D-aspartate receptor activation. Int. J. Dev. Neurosci. 14: 523–530.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, E. L. and Kalloniatis, M., 1997, Localisation of amino acid neurotransmitters during postnatal development of the rat retina. J. Comp. Neurol. 380: 449–471.

    Article  PubMed  CAS  Google Scholar 

  • Francke, M., Pannicke, T., Biedermann, B., Faude, F., Wiedemann, P., Reichenbach, A. and Reichelt, W., 1997, Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia, in press.

    Google Scholar 

  • Fulton, A. B., Albert, D. M. and Craft, J. L., 1978, Human albinism. Light and electron microscopy study. Arch. Ophthalmol. 96:305–310.

    Article  PubMed  CAS  Google Scholar 

  • Geller, S. F., Lewis, G. P., Anderson, D. H. and Fisher, S. K., 1995, Use of the MIB-1 antibody for detecting proliferating cells in the retina. Invest. Ophthalmol. Vis. Sci. 36: 737–744.

    PubMed  CAS  Google Scholar 

  • Germer, A., Kühnel, K., Grosche, J., Friedrich, A., Wolburg, H., Price, J., Reichenbach, A. and Mack, A., 1997a, Development of the neonatal rabbit retina in organ culture. 1. Comparison with histogenesis in vivo, and the effect of a gliotoxin (α-aminoadipic acid). Anat. Embryol., in press.

    Google Scholar 

  • Germer, A., Mack, A. and Reichenbach, A., 1997b, Mammalian Müller (glial) cell glutamine synthetase activity is low in retinal organ cultures but can be stimulated by several factors. Submitted to NeuroReport.

    Google Scholar 

  • Goldberg, S., 1977, Unidirectional, bidirectional and random growth of embryonic optic axons. Exp. Eye Res. 25: 399–404.

    Article  PubMed  CAS  Google Scholar 

  • Grosche, J., Härtig, W. and Reichenbach, A., 1995, Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (SG), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neurosci. Lett. 185: 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Guillemot, F. and Cepko, C. L., 1992, Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development 114: 743–754.

    PubMed  CAS  Google Scholar 

  • Halfter, W. and Deiss, S., 1986, Axonal pathfinding in organ-cultured embryonic avian retinae. Devel. Biol. 114: 269–310.

    Article  Google Scholar 

  • Harris, W. A. and Holt, C. E., 1990, Early events in the embryogenesis of the vertebrate visual system: Cellular determination and pathfinding. Annu. Rev. Neurosci. 13: 155–169

    Article  PubMed  CAS  Google Scholar 

  • Härtig, W., Grosche, J., Distler, C., Grimm D., El-Hifnawi, E. and Reichenbach, A., 1995, Alterations of Müller (glial) cells in dystrophic retinae of RCS rats. J. Neurocytol. 24: 507–517.

    Article  PubMed  Google Scholar 

  • Hata, Y., Nakagawa, K., Ishibashi, T., Inomata, H., Ueno, H. and Sueishi, K., 1995, Hypoxia-induced expression of vascular endothelial growth factor by retinal glial cells promotes in vitro angiogenesis. Virchows Arch. 426: 479–486.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, D., Forster, V., Dreyfus, H. and Sahel, J., 1994, Survival and regeneration of adult human photoreceptors in vitro. Brain Res. 643: 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W. and Hinds, R. L., 1974, Early ganglion cell differentiation in the mouse retina: an electron microscopic analysis utilizing serial sections. Dev. Biol. 37: 381–416.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, J. W. and Hinds, R. L., 1979, Differentiation of photoreceptors and horizontal cells in the embryonic mouse retina: an electron microscopic, serial section analysis. J. Comp. Neurol. 187: 495–512.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, R. F. and Vanderyt, J. T., 1994, Regeneration of the dopamine-cell mosaic in the retina of the goldfish. Visual Neurosci. 11: 209–217.

    Article  CAS  Google Scholar 

  • Hume, D. A., Perry, V. H. and Gordon, S., 1983, Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: Phagocytois of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J. Cell Biol. 97: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Hummelink, R. and Ballard, P. L., 1986, Endogenous corticoids and lung development in the fetal rabbit. Endocrinology 118: 1622–1629.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, D. D., Murphy, M. D., Olsson, C. V. and Brunken, W. J., 1992, S-Laminin expression in adult and developing retinae: A potential cue for photoreceptor morphogenesis. Neuron 8: 399–414.

    Article  PubMed  CAS  Google Scholar 

  • Hyatt, G. A., Schmitt, E. A., Fadool, J. M. and Dowling, J. E., 1996, Retinoic acid alters photoreceptor development in vivo. Proc. Natl. Acad. Sci. USA 93: 13298–13303.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, T. and Puro, D. G., 1995, Regulation of retinal glial cell proliferation by antiproliferation molecules. Exp. Eye Res. 60: 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Jeffery, G., 1997, The albino retina: an abnormality that provides insight into normal retinal development. TINS 20: 165–169.

    PubMed  CAS  Google Scholar 

  • Jeffery, G., Brem, G. and Montoliu, L., 1997, Correction of retinal abnormalities found in albinism by introduction of a functional tyrosinase gene in transgenic mice and rabbits. Dev. Brain Res. 99: 95–102.

    Article  CAS  Google Scholar 

  • Jensen, A. M. and Wallace, V. A., 1997, Expression of sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 124: 363–371.

    PubMed  CAS  Google Scholar 

  • Johns, P. R., 1982, Formation of photoreceptors in larval and adult goldfish. J. Neurosci. 2: 178–198.

    PubMed  CAS  Google Scholar 

  • Johnson, G. L., 1901, Contributions to the comparative anatomy of vertebrates, chiefly based on ophthalmoscopic examination. Phil. Trans. Roy. Soc. Lond. B 194: 1–82.

    Article  Google Scholar 

  • Johnson, G. L., 1968, Ophthalmoscopic studies on the eyes of mammals. Phil. Trans. Roy. Soc. Lond. B 254: 207–220.

    Article  Google Scholar 

  • Kaplan, H., Jasoni, C., Gariano, R., Hendrickson, A. and Sage, E.H., 1995, SPARC, a mediator of angiogenesis, is found in astrocytes and Müller cells of the primate retina. Invest. Ophthalmol. Vis. Sci. 36: S648.

    Google Scholar 

  • Kelley, N. W., Turner, J. K. and Reh, T. A., 1994, Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120: 2091–2102.

    PubMed  CAS  Google Scholar 

  • Kirsch, M., Lee, M.-Y., Meyer, V., Wiese, A. and Hofmann, H.-D., 1997, Evidence for multiple, local functions of ciliary neurotrophic factor (CNTF) in retinal development: expression of CNTF and its receptor and in vitro effects on target cells. J. Neurochem. 68: 979–990.

    Article  PubMed  CAS  Google Scholar 

  • Kljavin, I. J. and Reh, T. A., 1991, Müller cells are a preferred substrate for in vitro neurite extension by rod photoreceptor cells. J. Neurosci. 11: 2985–2994.

    PubMed  CAS  Google Scholar 

  • Kono, T., Kohno, T. and Inomata, H., 1995, Epiretinal membrane formation. Light and electron microscopical study in an experimental rabbit model. Arch. Ophthalmol. 113: 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, T. and Cogan, D. G., 1961, Retinal glycogen. Arch. Ophthalmol. 66: 94–104.

    Article  Google Scholar 

  • La Vail, M. M. and Reif-Lehrer, L., 1971, Glutamine synthetase in the normal and dystrophic mouse retina. J. Cell Biol. 51:348–354.

    Article  Google Scholar 

  • Layer, P. G., Rothermel, A., Hering, H., Wolf, B., deGrip, W. J., Hicks, D. and Willbold, W., 1997, Pigmented epithelium sustains cell proliferation and decreases expression of opsins and acetylcholinesterase in reaggre-gated chicken retinospheroids. Submitted to Europ. J. Neurosci.

    Google Scholar 

  • Layer, P. G. and Willbold, E., 1993, Histogenesis of the avian retina in reaggregation culture: From dissociated cells to laminar neuronal networks. Int. Rev. Cytol. 146: 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, G. P., Erickson, P. A., Guérin, C. J., Anderson, D. H. and Fisher, S. K., 1989, Changes in the expression of specific Müller cell proteins during long-term retinal detachment. Exp. Eye Res. 49: 93–111.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, G. P., Erickson, P. A., Guérin, C. J., Anderson, D. H. and Fisher, S. K., 1992, Basic growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J. Neurosci. 12: 3968–3978.

    PubMed  CAS  Google Scholar 

  • Lewis, G. P., Guérin, C. J., Anderson, D. H., Matsumoto, B. and Fisher, S. K., 1994, Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Am. J. Ophthalmol. 118: 368–376.

    PubMed  CAS  Google Scholar 

  • Lewis, G. P., Fisher, S. K. and Anderson, D. H., 1996, Fate of biotinylated basic fibroblast growth factor in the retina following intravitreal injection. Exp. Eye Res. 62: 309–324.

    Article  PubMed  CAS  Google Scholar 

  • Lillien, L. and Cepko, C., 1992, Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGFα. Development 115: 253–266.

    PubMed  CAS  Google Scholar 

  • Linser, P. and Moscona, A. A., 1979, Induction of glutamine synthetase in embryonic neural retina: Localization in Müller fibers and dependence on cell interactions. Proc. Natl. Acad. Sci. USA 76: 6476–6480.

    Article  PubMed  CAS  Google Scholar 

  • Linser, P. and Moscona, A. A., 1981, Carbonic anhydrase C in the neural retinal: transition from generalized to glia-specific cell localization during embryonic development. Proc. Natl. Acad. Sci. USA 78: 7190–7194.

    Article  PubMed  CAS  Google Scholar 

  • Linser, P. J. and Perkins, M. S., 1987, Regulatory aspects of the in vitro development of retinal Müller glial cells. Cell Differentiation 20: 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Mack, A. F. and Fernald, R. D., 1993, Regulation of cell division and rod differentiation in the teleost retina. Dev. Brain Res. 76: 183–187.

    Article  CAS  Google Scholar 

  • Mack, A. F. and Fernald, R. D., 1995, New rods move before differentiating in adult teleost retina. Dev. Biol. 170: 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Mack, A. F., Germer, A., Janke, C. and Reichenbach, A., 1997, Müller (glial) cells in the teleost retina: consequences of continuous growth. Submitted to Glia.

    Google Scholar 

  • Mangold, O., 1931, Das Determinationsproblem. Dritter Teil. Das Wirbeltierauge in der Entwicklung und Regeneration. Ergebn. Biol. 7: 193–403.

    Article  Google Scholar 

  • Masland, R. H., 1977, Maturation of function in the developing rabbit retina. J. Comp. Neurol. 175: 275–286.

    Article  PubMed  CAS  Google Scholar 

  • McArdle, C. B., Dowling, J. E., and Masland, R. H., 1977, Development of outer segments and synapses in the rabbit retina. J. Comp. Neurol. 175: 253–274.

    Article  PubMed  CAS  Google Scholar 

  • Meller, K., and Tetzlaff, W., 1976, Scanning electron microscopic studies on the development of the chick retina, Cell Tiss. Res. 170: 145–159.

    CAS  Google Scholar 

  • Michaelson, I. C., 1954, Retinal Circulation in Man and Animals. Thomas, Springfield, USA.

    Google Scholar 

  • Morest, D. K., 1979, The pattern of neurogenesis in the retina of the rat. Z. Anat.Entwickl.-Gesch. 131: 45–67.

    Article  Google Scholar 

  • Moscona, A. A., 1983, On glutamine synthetase, carbonic anhydrase and Müller glia in the retina. Progr. Retinal Res. 2: 111–135.

    Article  CAS  Google Scholar 

  • Mulay, S., Giannopoulos, M. and Solomon, S., 1973, Corticosteroid levels in the mother and fetus of the rabbit during gestation. Endocrinology 93: 1342–1348.

    Article  PubMed  CAS  Google Scholar 

  • Müller, B. and Peichl, L., 1989, Topography of cones and rods in the tree shrew retina. J. Comp. Neurol. 282: 581–594.

    Article  PubMed  Google Scholar 

  • Naumann, G. O. H., Lerche, W. and Schroeder, W., 1976, Foveola-Aplasie bei Tyrosinase-positivem oculocutanen Albinismus. Graefes Arch. Clin. Exp. Ophthalmol. 200: 39–50.

    Article  CAS  Google Scholar 

  • Newman, E. A., 1984, Regional specialization of retinal glial cell membrane. Nature 309: 155–157.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. A., 1991, Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander. J. Neurosci. 11: 3572–2983.

    Google Scholar 

  • Newman, E. A., 1993, Inward-rectifying potassium channels in retinal glial (Müller) cells. J. Neurosci. 13: 3333–3345.

    PubMed  CAS  Google Scholar 

  • Newman, E. A., 1994, A physiological measure of carbonic anhydrase in Müller Cells. Glia 11: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. A., Frambach, D. A. and Odette, L. L., 1984, Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225: 1174–1175.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. A. and Reichenbach, A., 1996, The Müller cell: a functional element of the retina. TINS 19: 307–312.

    PubMed  CAS  Google Scholar 

  • O’Loughlin, E. V., Hunt, D. M. and Kreutzmann, D., 1990, Postnatal development of colonic electrolyte transport in rabbits. Am. J. Physiol. 258: G447–G453.

    PubMed  Google Scholar 

  • Penfold, P. L. and Provis, J. M., 1986, Cell death in the development of the human retina: phagocytosis of pycno-tic and apoptotic bodies by retinal cells. Graefes Arch. Clin. Exp. Ophthalmol. 224: 549–553.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, B., Grosche, J., Reichenbach, A. and Hamprecht, B., 1994, Immunocytochemical demonstration of glycogen Phosphorylase in Müller (glial) cells of the mammalian retina. Glia 12: 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Piddington, R., and Moscona, A. A., 1967, Precocious induction of retinal glutamine synthetase by hydrocortisone in the embryo and in culture. Age-dependent differences in tissue response. Biochim. Biophys. Acta 141: 429–432.

    Article  PubMed  CAS  Google Scholar 

  • Poitry-Yamate, C. L., Poitry, S. and Tsacopoulos, M., 1995, Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 15: 5179–5191.

    PubMed  CAS  Google Scholar 

  • Polley, E. H., Zimmermann, R. P. and Fortney, R. L., 1989, Neurogenesis and maturation of cell morphology in the development of the mammalian retina. In: Finlay, B. L. and Sengelaub, D. R. (eds.): Development of the Vertebrate Retina. pp.3–29, Plenum Press, New York London.

    Chapter  Google Scholar 

  • Pow, D. V. and Robinson, S. R., 1994, Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60:355–366.

    Article  PubMed  CAS  Google Scholar 

  • Provis, J. M. and Penfold, P. L., 1988, Cell death and elimination of retinal axons during development. Progr. Neurobiol. 31: 331–347.

    Article  CAS  Google Scholar 

  • Puro, D. G., 1995, Growth factors and Müller cells. Progr. Retinal Eye Res. 15: 89–101.

    Article  Google Scholar 

  • Puro, D. G. and Stuenkel, E., 1995, Thrombin-induced inhibition of potassium currents in human retinal glial (Müller) cells. J. Physiol. (Lond.) 485: 337–348.

    CAS  Google Scholar 

  • Puro, D. G., Roberge, F., and Chan, C.-C., 1989, Retinal glial cell proliferation and ion channels: a possible link. Invest. Ophthalmol. Vis. Sci. 30: 521–529.

    PubMed  CAS  Google Scholar 

  • Puro, D. G., Mano, T., Chan, C.-C., Fukuda, M. and Shimada, H., 1990, Thrombin stimulates the proliferation of human retinal glial cells. Graefe’s Arch. Clin. Exp. Ophthal. 228: 169–173.

    CAS  Google Scholar 

  • Puro, D. G., Yuan, J. P. and Sucher, N. J., 1996, Activation of NMDA receptor-channels in human retinal Müller glial cells inhibits inward-rectifying potassium channels. Vis. Neurosci. 13: 319–326.

    Article  PubMed  CAS  Google Scholar 

  • Raju, T. R. and Bennet, M. R., 1986, Retinal ganglion cell survival requirements: a major but transient dependence on Müller glia during development. Brain Res. 383: 165–176.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1971, Guidance of neurons migrating to the fetal monkey neocortex. Brain Res. 33: 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, K. E., 1973, A morphometric study of the Müller cells, their nuclei and mitochondria, in the rat retina. J. Ultrastruct. Res. 44: 96–112.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, K. E., 1975, A morphometric study of the Müller cell in rod and cone retinas with and without retinal vessels. Exp. Eye Res. 20: 151–166.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, P. A., and Rivlin, P. K., 1987, Germinal cells in the goldfish retina that produce rod photoreceptors. Dev. Biol. 122: 120–138.

    Article  PubMed  CAS  Google Scholar 

  • Reh, T. A., 1987, Cell-specific regulation of neuronal production in the larval frog retina. J. Neurosci. 7: 3317–3324.

    PubMed  CAS  Google Scholar 

  • Reh, T. A., 1991, Determination of cell fate during retinal histogenesis: Intrinsic and extrinsic mechanism. In: Development of the visual system. Lam, D. M. and Shatz, C. J. (eds), MIT Press, Boston, pp.79–94.

    Google Scholar 

  • Reh, T. A., 1992, Cellular interactions determine neuronal phenotypes in rodent retinal cultures. J. Neurobiol. 23: 1067–1083.

    Article  PubMed  CAS  Google Scholar 

  • Reichelt, W., Dettmer, E., Brückner, G., Brust, P., Eberhardt, W. and Reichenbach, A., 1989, Potassium as a signal for both proliferation and differentation of rabbit retinal (Müller) glial growing in cell culture. Cell. Signalling 1: 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Reichelt, W., Pannicke, T., Biedermann, B., Francke, M. and Faude, F., 1997, Comparison between functional characteristics of healthy and pathological human retinal Müller glial cells. Survey Ophthalmol., in press.

    Google Scholar 

  • Reichenbach, A., 1993, Two types of neuronal precursor cells in the mammalian retina — a short review. J. Hirn-forsch. 34:335–341.

    CAS  Google Scholar 

  • Reichenbach, A. and Reichelt, W., 1986, Postnatal development of radial glial (Müller) cells of the rabbit retina. Neurosci. Lett. 71: 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A. and Robinson, S. R., 1995a, Ependymoglia and ependymoglia-like cells. In Neuroglia Cells, B. Ransom and H. Kettenmann, eds., pp.58–84. New York — Oxford: Oxford University Press.

    Google Scholar 

  • Reichenbach, A. and Robinson, S. R., 1995b, The involvement of Müller cells in the outer retina. In: Neurobiology and Clinical Aspects of the Outer Retina, M. B. A. Djamgoz, S. N. Archer and S. Vallerga, eds., pp. 395–416. London: Chapman and Hall.

    Chapter  Google Scholar 

  • Reichenbach, A. and Robinson, S. R., 1995c, Phylogenetic constraints on retinal organisation and development. Progr. Retinal Eye Res. 15: 139–171.

    Article  Google Scholar 

  • Reichenbach, A., Hagen, E., Schippel, K. and Eberhardt, W., 1988, Quantitative electron microscopy of rabbit Müller (glial) cells in dependence of retinal topography. Z. mikroskop.-anat. Forsch. 102: 721–755.

    CAS  Google Scholar 

  • Reichenbach, A., Schnitzer, J., Friedrich, A., Ziegert, M., Brückner, G. and Schober, W., 1991a, Development of the rabbit retina. I. Size of eye and retina, and postnatal cell proliferation. Anat. Embryol. 183: 287–297.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Schnitzer, J., Friedrich, A., Knothe, A. K. and Henke, A., 1991b, Development of the rabbit retina. II. Müller cells. J. Comp. Neurol. 311: 33–44.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Baar, U., Petter, H., Schaaf, P., Osborne, N. N. and Buse, E., 1992, Neuronal ectopia in tiger retina. J. Hirnforsch. 33: 585–593.

    PubMed  CAS  Google Scholar 

  • Reichenbach, A., Stolzenburg, J.-U., Eberhardt, W., Chao, T. I., Dettmer, D., and Hertz, L., 1993, What do retinal Müller (glial) cells do for their neuronal’ small siblings’? J. Chem. Neuroanat. 6: 201–213.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Ziegert, M., Schnitzer, J., Pritz-Hohmeier, S., Schaaf, P., Schober, W. and Schneider, H., 1994, Development of the rabbit retina. V. The question of “columnar units’. Dev. Brain Res. 79: 72–84.

    Article  CAS  Google Scholar 

  • Reichenbach, A., Kasper, M., El-Hifnawi, E., Eckstein, A.-K. and Fuchs, U., 1995a, Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol. 90: 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Stolzenburg, J.-U., Wolburg, H., Härtig, W., El-Hifnawi, E., and Martin, H., 1995b, Effects of enhanced extracellular ammonia concentration on cultured mammalian retinal glial (Müller) cells. Glia 13: 195–208.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, A., Skatchkov, S. N. and Reichelt, W., 1997, The retina as a model of glial function in the brain. In: Laming, P., E. Sykova, A. Reichenbach, G. Hatton and H. Bauer (eds.): Glial Cells and their Role in Behaviour, Cambridge University Press, New York, in press.

    Google Scholar 

  • Repka, A. and Adler, R., 1992, Differentiation of retinal precursor cells born in vitro. Devel. Biol. 153: 242–249.

    Article  CAS  Google Scholar 

  • Riepe, R. E. and Norenberg, M. D., 1978, Glutamine synthetase in the developing rat retina: an immunohisto-chemical study. Exp. Eye Res. 27: 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. R., 1991, Development of the mammalian retina. In: Dreher, B. and S. R. Robinson (eds.): “Neuroanatomy of the visual pathways and their development”; vol. 3 of Vision and Visual Dysfunction, J. R. Cronly-Dillon (Series Ed.), pp. 69–128. Macmillan, U. K.

    Google Scholar 

  • Rodieck, R. W., 1988, The primate retina. In: Comparative Primate Biology, vol. 4: Neurosciences, Alan R. Liss, Inc., New York, pp 203–278.

    Google Scholar 

  • Sarthy, P. V. and Lam, D. M. K., 1978, Biochemical studies of isolated glial (Müller) cells from the turtle retina. J. Cell Biol. 78: 675–684.

    Article  PubMed  CAS  Google Scholar 

  • Schlosshauer, B., Bauch H., and Stier, H., 1996, Polarized radial glia differentially affects axonal versus dendritic outgrowth. Soc. Neurosci. Abstr. 22, p. 1717.

    Google Scholar 

  • Schumacher, S., Volkmer, H., Buck, F., Otto, A., Tárnok, A., Roth, S. and Rathjen, F. G., 1997, Chicken acidic leucine-rich EGF-like domain containing brain protein (CALEB), a neural member of the EGF family of differentiation factors, is implicated in neurite formation. J. Cell Biol. 136: 895–906.

    Article  PubMed  CAS  Google Scholar 

  • Skatchkov, S. N., Vyklicky, L., Clasen, T., and Orkand, R. K., 1996, Effect of cutting the optic nerve on K+ currents in endfeet of Müller cells isolated from frog retina. Neurosci. Lett. 208: 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Spemann, H., 1912, Zur Entwicklung des Wirbeltierauges. Zool. Jahrb. 32: 1–98.

    Google Scholar 

  • Stier, H. and Schlosshauer, B., 1995, Axonal guidance in the chicken retina. Development 121: 1443–1454.

    PubMed  CAS  Google Scholar 

  • Stier, H., and Schlosshauer, B., 1997, Different cell surface areas of polarized radial glia having opposite effects on axonal outgrowth. Submitted to J. Neurosci.

    Google Scholar 

  • Stolzenburg, J.-U., Haas, J., Härtig, W., Paulke, B.-R., Wolburg, H., Reichelt, W., Chao, T.-I., Wolff, J. R. and Reichenbach, A., 1992, Phagocytosis of different kinds of latex beads by rabbit retinal Müller (glial) cells in vitro. J. Hirnforsch. 33: 557–564.

    PubMed  CAS  Google Scholar 

  • Stone, J., Itin, A., Alon, T., Peer, J., Gnessin, H., Chan-Ling, T. and Keshet, E., 1995, Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15: 4738–4747.

    PubMed  CAS  Google Scholar 

  • Takagi, H., King, G. L., Ferrara, N. and Aiello, L. P., 1996, Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A(2) receptors in retinal capillary endothelial cells. Invest. Ophthalmol. Vis. Sci. 37: 1311–1321.

    PubMed  CAS  Google Scholar 

  • Tanabe, Y., Saito, N., and Nakamura, T., 1986, Ontogenetic steroidogenesis by testes, ovary, and adrenals of embryonic and postembryonic chickens (Gallus domesticus)1. General Comp. Endocrinol. 63: 456–463.

    Article  CAS  Google Scholar 

  • Thanos, S., 1991, The relationship of microglial cells to dying neurons during natural neuronal cell death and axo-tomy-induced degeneration of the rat retina. Eur. J. Neurosci. 3: 1188–1207.

    Article  Google Scholar 

  • Turner, D. L. and Cepko, C. L., 1987, A common progenitor for neurons and glia persists in rat retina late in development. Nature 328: 131–136.

    Article  PubMed  CAS  Google Scholar 

  • Uchihori, Y. and Puro, D.G., 1993, Glutamate as a neuron-to-glial signal for mitogenesis: role of glial N-methyl-D-aspartate receptors. Brain Res. 613: 212–220.

    Article  PubMed  CAS  Google Scholar 

  • Uga, S. and Smelser, G. K., 1973, Electron microscopic study of the development of retinal Müllerian cells. Invest. Ophthalmol. 12: 295–307.

    PubMed  CAS  Google Scholar 

  • Vardimon, L., Ben-Dror, I., Havazelet, N. and Fox, L. E., 1993, Molecular control of glutamine synthetase expression in the developing retina tissue. Devel. Dynamics 196: 276–282.

    Article  CAS  Google Scholar 

  • Watanabe, T. and Raff, M. C., 1990, Rod photoreceptor development in vitro: Intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 2: 461–467.

    Article  Google Scholar 

  • Willbold, E., Berger, J., Reinicke, M. and Wolburg, H., 1997, On the role of Müller cells in histogenesis: only retinal spheroids, but not tectal, telencephalic and cerebellar spheroids develop histotypical patterns. J. Brain Res., in press.

    Google Scholar 

  • Willbold, E., Reinicke, M., Lance-Jones, C., Lagenaur, C., Lemmon, V. and Layer, P., 1995, Müller glia stabilizes cell columns during retinal development: lateral cell migration but not neuropil growth is inhibited in mixed chick-quail retinospheroids. Europ. J. Neurosci. 7: 2277–2284.

    Article  CAS  Google Scholar 

  • Wolburg, H., Reichelt, W., Stolzenburg, J.-U., Richter, W and Reichenbach, A., 1990, Rabbit retinal Müller cells in cell culture show gap and tight junctions which they do not express in situ. Neurosci. Lett. 11: 58–63.

    Article  Google Scholar 

  • Young, R. W., 1983, The life history of retinal cells. Trans. Am. Ophthalmol. Soc. 81: 193–228.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichenbach, A. et al. (1998). Glio-Neuronal Interactions in Retinal Development. In: Chalupa, L.M., Finlay, B.L. (eds) Development and Organization of the Retina. NATO ASI Series, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5333-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5333-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7433-6

  • Online ISBN: 978-1-4615-5333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics