Skip to main content
  • 2542 Accesses

Abstract

Hg1-xCd x Te is one of the Hg-based IIb–VIb semiconductor alloys crystallizing in the zinc-blende structure over the entire composition range (0≤x≤1.0). The fundamental optical absorption edge of Hg1-xCd x Te can be tuned by about 2 eV, running at 300 K from 1.49 eV (1.53 eV) for CdTe to -0.14 eV (-0.12 eV) for HgTe with an inverted Γ8–Γ6 ordering [1] ([2]). Among the Hg-based semiconductor alloys, Hg1-xCd x Te is the most extensively studied alloy system because it has proved to be useful as a material for high-performance photoconductive and photovoltaic IR detectors [3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. L. Hansen, J. L. Schmit, and T. N. Casselman, J, Appl. Phys. 53, 7099 (1982).

    Article  CAS  Google Scholar 

  2. J. P. Laurenti, J. Camassel, A. Bouhemadou, B. Toulouse, R. Legros, and A. Lus-son, J. Appl. Phys. 67, 6454 (1990).

    Article  CAS  Google Scholar 

  3. C. T. Elliott, in Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series No. 10, edited by P. Capper (INSPEC (IEE), London, 1994), p. 311.

    Google Scholar 

  4. I. M. Baker, in Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareviews Series No. 10, edited by P. Capper (INSPEC (IEE), London, 1994), p. 323.

    Google Scholar 

  5. J. D. Patterson, W. A. Gobba, and S. L. Lehoczky, J. Mater. Res. 7, 2211 (1992).

    Article  CAS  Google Scholar 

  6. A. N. Pikhtin and A. D. Yas’kov, Sov. Phys.Semicond. 22, 613 (1988).

    Google Scholar 

  7. J. Baars and F. Sorger, Solid State Commun. 10, 875 (1972).

    Article  CAS  Google Scholar 

  8. D. N. Talwar and M. Vandevyver, J. Appl. Phys. 56, 1601 (1984).

    Article  CAS  Google Scholar 

  9. S. P. Kozyrev, V. N. Pyrkov, and L. K. Vodop’yanov, Sov. Phys. Solid State 34, 1984 (1992).

    Google Scholar 

  10. D. Bagot, R. Granger, and S. Rolland, Phys. Status Solidi B 183, 395 (1994).

    Article  CAS  Google Scholar 

  11. S. P. Kozyrev, L. K. Vodopyanov, and R. Triboulet, Phys. Rev. B 58, 1374 (1998).

    Article  CAS  Google Scholar 

  12. M. W. Scott, J. Appl. Phys. 40, 4077 (1969).

    Article  CAS  Google Scholar 

  13. E. Finkman and Y. Nemirovsky, J. Appl. Phys. 50, 4356 (1979).

    Article  CAS  Google Scholar 

  14. L. D. Saginov, V. P. Ponomarenko, V. A. Fedirko, and V. I. Stafeev, Sov. Phys. Semicond. 16, 298 (1982).

    Google Scholar 

  15. E. Finkman and S. E. Schacham, J. Appl. Phys. 56, 2896 (1984).

    Article  CAS  Google Scholar 

  16. J. Chu, Z. Mi, and D. Tang, Infrared Phys. 32, 195 (1991).

    Article  CAS  Google Scholar 

  17. B. Li, J. H. Chu, Y. Chang, Y. S. Gui, and D. Y. Tang, Infrared Phys. Technol. 37, 525 (1996).

    Article  CAS  Google Scholar 

  18. V. Nathan, J. Appl. Phys. 83, 2812 (1998).

    Article  CAS  Google Scholar 

  19. J. Chu, B. Li, and D. Tang, J. Appl. Phys. 75, 1234 (1994).

    Article  CAS  Google Scholar 

  20. Z. Kucera, Phys. Status Solidi A 100, 659 (1987).

    Article  CAS  Google Scholar 

  21. K. Liu, J. H. Chu, and D. Y. Tang, J. Appl. Phys. 75, 4176 (1994).

    Article  CAS  Google Scholar 

  22. R. R. Galazka and A. Kisiel, Phys. Status Solidi 34, 63 (1969).

    Article  CAS  Google Scholar 

  23. L. Vina, C. Umbach, M. Cardona, and L. Vodopyanov, Phys. Rev. B 29, 6752 (1984).

    Article  CAS  Google Scholar 

  24. H. Arwin and D. E. Aspnes, J. Vac. Sci. Technol. A 2, 1316 (1984).

    Article  CAS  Google Scholar 

  25. C. C. Kim and S. Sivananthan, J. Electron. Mater. 26, 561 (1997).

    Article  CAS  Google Scholar 

  26. D. E. Aspnes and H. Arwin, J. Vac. Sci. Technol. A 2, 1309 (1984).

    Article  CAS  Google Scholar 

  27. D. R. Rhiger, J. Electron. Mater. 22, 887 (1993).

    Article  CAS  Google Scholar 

  28. G. J. Orloff and P. B. Smith, J. Vac. Sci. Technol. A 12, 1252 (1994).

    Article  CAS  Google Scholar 

  29. J. D. Benson, A. B. Cornfeld, M. Martinka, K. M. Singley, Z. Derzko, P. J. Shorten, J. H. Dinan, P. R. Boyd, F. C. Wolfgram, B. Johs, P. He, and J. A. Woollam, J. Electron. Mater. 25, 1406 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). Mercury Cadmium Telluride (Hg1-x Cd x Te). In: Optical Constants of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5247-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5247-5_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8567-7

  • Online ISBN: 978-1-4615-5247-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics