Skip to main content
  • 650 Accesses

Abstract

The optical constants in the interband transition region of semiconductors depend fundamentally on the electronic energy-band structure of the semiconductors. The relation between the energy-band structure and ε2(E) can be given by [1] where u is the combined DOS mass, the Dirac 5 function represents the spectral joint DOS between the valence- [Evk)] and conduction-band [Ec(k)] states differing by the energy E=hω of the incident light, Fcv(K:) is the momentum-matrix element between the valence- and conduction-band states, and the integration is performed over the first BZ. There have been several analytic models that can be used to explain ε(E) spectra in the interband transition region of semiconductors. In the following, we briefly review such analytic models, namely HOA, SCP, and MDF, and show the analyzed results of ε(E) for GaAs using these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for instance, G. Harbake, in Optical Properties of Solids, edited by F. Abelès (North-Holland, Amsterdam, 1972), p. 21.

    Google Scholar 

  2. M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, J. Appl. Phys. 56, 2664 (1984).

    Article  CAS  Google Scholar 

  3. H. Ehrenreich and M. L. Cohen, Phys. Rev. 115, 786 (1959).

    Article  Google Scholar 

  4. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, J. Appl. Phys. 60, 754 (1986).

    Article  CAS  Google Scholar 

  5. F. L. Terry, Jr., J. Appl. Phys. 70, 409 (1991).

    Article  CAS  Google Scholar 

  6. P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, Phys. Rev. B 36, 4821 (1987).

    Article  CAS  Google Scholar 

  7. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).

    Article  CAS  Google Scholar 

  8. S. Adachi, Physical Properties of III-V Semiconductor Compounds: InP, InAs, GaAs, GaP, InGaAs, and InGaAs (Wiley-Interscience, New York, 1992).

    Book  Google Scholar 

  9. S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Super-lattice Properties (World Scientific, SI, 1994).

    Book  Google Scholar 

  10. S. Adachi, Phys. Rev. B 35, 7454 (1987).

    Article  CAS  Google Scholar 

  11. S. Adachi, Phys. Rev. B 38, 12345 (1988).

    Article  CAS  Google Scholar 

  12. S. Adachi, J. Appl. Phys. 66, 6030 (1989).

    Article  CAS  Google Scholar 

  13. S. Adachi, Phys. Rev. B 41, 1003 (1990).

    Article  CAS  Google Scholar 

  14. B. Velicky and J. Sak, Phys. Status Solidi 16, 147 (1966).

    Article  CAS  Google Scholar 

  15. E. O. Kane, Phys. Rev. 180, 852 (1969).

    Article  CAS  Google Scholar 

  16. J. E. Rowe and D. E. Aspnes, Phys. Rev. Lett. 25, 162 (1970).

    Article  CAS  Google Scholar 

  17. R. M. Martin, J. A. Van Vechten, J. E. Rowe, and D. E. Aspnes, Phys. Rev. B 6, 2500 (1972).

    Article  CAS  Google Scholar 

  18. W. Hanke and L. J. Sham, Phys. Rev. B 21, 4656 (1980).

    Article  CAS  Google Scholar 

  19. M. del Castillo-Mussot and L. J. Sham, Phys. Rev. B 31, 2092 (1985).

    Article  Google Scholar 

  20. S. Adachi, Phys. Rev. B 38, 12966 (1988).

    Article  CAS  Google Scholar 

  21. S. Adachi, J. Appl. Phys. 66, 813 (1989).

    Article  CAS  Google Scholar 

  22. T. Aoki and S. Adachi, J. Appl. Phys. 69, 1574 (1991).

    Article  CAS  Google Scholar 

  23. S. Adachi and K. Sato, Jpn. J. Appl. Phys. 31, 3907 (1992).

    Article  CAS  Google Scholar 

  24. T. Kimura and S. Adachi, Jpn. J. Appl. Phys. 32, 2740 (1993).

    Article  CAS  Google Scholar 

  25. N. Suzuki, K. Sawai, and S. Adachi, J. Appl. Phys. 77, 1249 (1995).

    Article  CAS  Google Scholar 

  26. M. Miyazaki and S. Adachi, J. Appl. Phys. 77, 1741 (1995).

    Article  CAS  Google Scholar 

  27. S. Adachi and T. Miyazaki, Phys. Rev. B 51, 14317 (1995).

    Article  CAS  Google Scholar 

  28. S. Ozaki and S. Adachi, J. Appl. Phys. 78, 3380 (1995).

    Article  CAS  Google Scholar 

  29. S. Ozaki, S. Adachi, M. Sato, and K. Ohtsuka, J. Appl. Phys. 79, 439 (1996).

    Article  Google Scholar 

  30. D. W. Jenkins, J. Appl. Phys. 68, 1848 (1990).

    Article  CAS  Google Scholar 

  31. A. D. Rakic and M. L. Majewski, J. Appl. Phys. 80, 5909 (1996).

    Article  CAS  Google Scholar 

  32. C. C. Kim, J. W. Garland, H. Abad, and P. M. Raccah, Phys. Rev. B 45, 11749 (1992).

    Article  Google Scholar 

  33. H. R. Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963).

    Article  CAS  Google Scholar 

  34. D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors (Pergamon, Oxford, 1968).

    Google Scholar 

  35. Y. P. Varshni, Physica 34, 149 (1967).

    Article  CAS  Google Scholar 

  36. H. Yao, P. G. Snyder, and J. A. Woollam, J. Appl. Phys. 70, 3261 (1991).

    Article  CAS  Google Scholar 

  37. M. D. Sturge, Phys. Rev. 127, 768 (1962).

    Article  CAS  Google Scholar 

  38. D. E. Aspnes, W. E. Quinn, and S. Gregory, Appl. Phys. Lett. 56, 2569 (1990).

    Article  CAS  Google Scholar 

  39. M. Hanfland, K. Syassen, and N. E. Christensen, J. Phys. (Paris) Colloq. 45, C8–57 (1984).

    Article  Google Scholar 

  40. M. Alouani, L. Brey, and N. E. Christensen, Phys. Rev. B 37, 1167 (1988).

    Article  CAS  Google Scholar 

  41. J. Z. Hu and I. L. Spain, Solid State Commun. 51, 263 (1984).

    Article  CAS  Google Scholar 

  42. H. Olijnyk, S. K. Sikka, and W. B. Holzapfel, Phys. Lett. 103A, 137 (1984).

    CAS  Google Scholar 

  43. Y. K. Vohra, K. E. Blister, S. Desgreniers, A. L. Ruoff, K. J. Chang, and M. L. Cohen, Phys. Rev. Lett. 56, 1944 (1986).

    Article  CAS  Google Scholar 

  44. S.-C. Yu, I. L. Spain, and E. F. Skelton, J. Appl. Phys. 49, 4741 (1978).

    Article  CAS  Google Scholar 

  45. See, M. I. McMahan, R. J. Nelmes, N. G. Wright, and D. R. Allan, Phys. Rev. B 48, 16246 (1993), and references cited therin.

    Article  Google Scholar 

  46. M. Hanfland, M. Alouani, K. Syassen, and N. E. Christensen, Phys. Rev. B 38, 12864 (1988).

    Article  CAS  Google Scholar 

  47. P. Etchegoin, J. Kircher, M. Cardona, C. Grein, and E. Bustarret, Phys. Rev. B 46, 15139 (1992).

    Article  CAS  Google Scholar 

  48. P. Etchegoin, J. Kircher, M. Cardona, and C. Grein, Phys. Rev. B 45, 11721 (1992).

    Article  CAS  Google Scholar 

  49. C. Pickering, R. T. Carline, M. T. Emeny, N. S. Garawal, and L. K. Howard, Appl. Phys. Lett. 60, 2412 (1992).

    Article  CAS  Google Scholar 

  50. See, L. Vina and M. Cardona, Phys. Rev. B 34, 2586(1986), and references cited therein.

    Article  CAS  Google Scholar 

  51. D. E. Aspnes, A. A. Studna, and E. Kinsbron, Phys. Rev. B 29, 768 (1984).

    Article  Google Scholar 

  52. L. Vina and M. Cardona, Phys. Rev. B 29, 6739 (1984).

    Article  CAS  Google Scholar 

  53. F. Lukeš, S. Gopalan, and M. Cardona, Phys. Rev. B 47, 7071 (1993).

    Article  Google Scholar 

  54. S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, New York, 1992).

    Book  Google Scholar 

  55. P. de Mierry and M. Stutzmann, Phys. Rev. B 46, 13142 (1992).

    Article  Google Scholar 

  56. S. Zollner, M. Cardona, and S. Gopalan, Phys. Rev. B 45, 3376 (1992).

    Article  CAS  Google Scholar 

  57. C. Parks, A. K. Ramdas, S. Rodriguez, K. M. Itoh, and E. E. Haller, Phys. Rev. B 49, 14244 (1994), and references cited therein.

    Article  CAS  Google Scholar 

  58. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

    Google Scholar 

  59. H. G. Tompkins, A User‘s Guide to Ellipsometry (Academic, Boston, 1993).

    Google Scholar 

  60. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  CAS  Google Scholar 

  61. S. Logothetidis, M. Cardona, P. Lautenschlager, and M. Garriga, Phys. Rev. B 34, 2458 (1986).

    Article  CAS  Google Scholar 

  62. S. Ninomiya and S. Adachi, J. Appl. Phys. 78, 1183 (1995).

    Article  Google Scholar 

  63. A. N. Saxena, J. Opt. Soc. Am. 55, 1061 (1965).

    Article  Google Scholar 

  64. H. Kato and S. Adachi (unpublished).

    Google Scholar 

  65. D. E. Aspnes and A. A. Studna, Appl. Phys. Lett. 39, 316 (1981).

    Article  CAS  Google Scholar 

  66. E. Kuphal and H. W. Dinges, J. Appl. Phys. 50, 4196 (1979).

    Article  CAS  Google Scholar 

  67. A. C. Adams and B. R. Pruniaux, J. Electrochem. Soc. 120, 408 (1973).

    Article  CAS  Google Scholar 

  68. H. R. Philipp, in Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, 1985), p. 749.

    Google Scholar 

  69. G. E. Jellison, Jr., Opt. Mat. 1, 151 (1992).

    Article  CAS  Google Scholar 

  70. K. Utani, T. Suzuki, and S. Adachi, J. Appl. Phys. 73, 3467 (1993).

    Article  CAS  Google Scholar 

  71. H. Yao, J. A. Woollam, and S. A. Alterovitz, Appl. Phys. Lett. 62, 3324 (1993).

    Article  CAS  Google Scholar 

  72. W. Kern and D. Puotinen, RCA Rev. 31, 187(1970); W. Kern, RCA Rev. 31, 207 (1970).

    CAS  Google Scholar 

  73. S. Adachi and K. Utani, Jpn. J. Appl. Phys. 32, LI 189 (1993); K. Kobayashi, T. Suzuki, and S. Adachi, Jpn. J. Appl. Phys. 33, L15 (1994).

    Google Scholar 

  74. C. G. Granqvist and O. Hunderi, Phys. Rev. B 16, 3513 (1977).

    Article  CAS  Google Scholar 

  75. D. E. Aspnes, J. B. Theeten, and F. Hottier, Phys. Rev. B 20, 3292 (1979).

    Article  CAS  Google Scholar 

  76. G. S. Higashi, R. S. Becker, Y. J. Chabal, and A. J. Becker, Appl. Phys. Lett. 58, 1656 (1991); P. Dumas and Y. J. Chabal, Chem. Phys. Lett. 181, 537 (1991).

    Article  CAS  Google Scholar 

  77. V. V. Levenets, V. I. Beklemishev, E. P. Kirilenko, I. I. Makhonin, A. Yu. Trifonov, B. A. Loginov, and V. V. Protasenko, Jpn. J. Appl. Phys. 34, 1723 (1995).

    Article  CAS  Google Scholar 

  78. S. Adachi, T. Arai, and K. Kobayashi, J. Appl. Phys. 80, 5422 (1996).

    Article  CAS  Google Scholar 

  79. T. Yasuda and D. E. Aspnes, Appl. Opt. 33, 7435 (1994).

    Article  CAS  Google Scholar 

  80. V. Nayar, W. Y. Leong, C. Pickering, A. J. Pidduck, R. T. Carline, and D. J. Robbins, Appl. Phys. Lett. 61, 1304 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adachi, S. (1999). The Interband Transition Region: Crystalline Materials. In: Optical Properties of Crystalline and Amorphous Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5241-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5241-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7389-6

  • Online ISBN: 978-1-4615-5241-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics