Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 303))

  • 183 Accesses

Abstract

Although it was already postulated at the beginning of this century by Garrod,1 the founder of modern biochemical genetics, that hereditary determined differences in certain biochemical processes could be the cause for adverse reactions after the ingestion of drugs and food it was not until the late 1950s when it was proven that his hypothesis was correct.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.E. Garrod, 1992, The incidence of alcaptonuria: A study in chemical individuality, Lancet 339:1616–1620.

    Article  Google Scholar 

  2. F. Vogel and A.G. Motulsky, 1986, Human genetics. Problem and approches, 2nd ed., Springer-Verlag, Berlin.

    Google Scholar 

  3. L. Luzzatto and A. Mehta, 1989, Glucose-6-phaophate dehydrogenase deficiency in: The metabolic basis of inherited diseases, (C.R. Scriver, A.L. Baudet, W.S. Sly, D. Vale, eds), Ch. 91, McGraw-Hill, New York.

    Google Scholar 

  4. C. Ruwende, S.C. Khoo, R.W. Snow, and S.N.R. Yates, D. Kwiatkowski, S. Gupta, P. Warn, C.E.M. All-sopp, S.C. Gilbert, N. Peschu, C.I. Newbold, B.M. Greenwood, K. Marsh, and A.V.S. Hill, 1995, Natural selection of hemi-and heterozygotes for G-6-PD deficiency in Africa by resistance to severe malaria. Na ture 376:246–249.

    CAS  Google Scholar 

  5. D.R. Nelson, L. Koymans, T. Kamataki, J.J. Stegeman, R. Feyereisen, D.J. Waxman, M.R. Waterman, O. Gotoh, M.J. Coon, R.W. Estabrook, l.C. Gunsalus, and D.W. Nebert, 1996, P450 superfamily: update on new sequences, gene mapping, accession number and nomenclature. Pharmacogenelics 6:1–42.

    Article  CAS  Google Scholar 

  6. A. Mahgoub, J.R. Idle, L.G. Dring, R. Lancester, and R.L. Smith, 1977, Polymorphic hydoxylation of de-brisoquine in man, Lancet 2:584–586.

    Article  PubMed  CAS  Google Scholar 

  7. M. Eichelbaum, N. Spannbrucker, B. Steinicke, and H.J. Dengler, 1979, Defective N-oxidation of sparteine in man: a new pharmacogenetic defect, Eur. J. Clin. Pharmacol. 16:183–187.

    Article  PubMed  CAS  Google Scholar 

  8. M. Eichelbaum and A.S. Gross, 1990, The genetic polymorphism of debrisoquine/sparteine metabolism-clinical aspects, Pharmacol. Ther. 46:377–394.

    Article  PubMed  CAS  Google Scholar 

  9. U.A. Meyer, R.C. Skoda, and U.M. Zanger, 1990, The genetic polymorphism of debrisoquine/sparteine metabolism-molecular mechanisms, Pharmacol. Ther. 46:297–308.

    Article  PubMed  CAS  Google Scholar 

  10. M. Eichelbaum, M.P. Baur, H.J. Dengler, B.O. Osikowska Evers, G. Tieves, and C. Zekorn, and C. Rittner, 1987, Chromosomal assignment of human cytochrome P450 (debrisoquine/sparteine type) to chromosome 22, Br. J. Clin. Pharmacol. 23:455–458.

    Article  PubMed  CAS  Google Scholar 

  11. F.J. Gonzales, F. Vilbois, J.P. Hardwick, O.W. McBride, D.W. Nebert, and H.V. Gelboin, U.A. Meyer, 1988, Human debrisoquine 4-hydroxylase (P450IID1): cDNA and deduced amino acid sequence and as signment of the CYP2D locus to chromosome 22, Genomics 2:174–179.

    Article  Google Scholar 

  12. S. Kimura, M. Umeno, R.C. Skoda, U.A. Meyer, and F.J. Gonzales, 1989, The human debrisoquine 4-hy droxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene, Am. J. Hum. Genet. 45:889–904.

    PubMed  CAS  Google Scholar 

  13. A. Gaedigk, M. Blum, R. Gaedigk, M. Eichelbaum, and U.A. Meyer, 1991, Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debriso-quine/sparteine polymorphism, Am. J. Hum. Genet. 48:943–950.

    PubMed  CAS  Google Scholar 

  14. M.H. Heim and U.A. Meyer, 1992, Evolution of a highly polymorphic human cytochrome P450 gene clus ter: CYP2D6, Genomics 14:49–58.

    Article  PubMed  CAS  Google Scholar 

  15. L. Bertilsson, M.L. Dahl, F. Sjöqvist, A. Åberg Wistedt, M. Humble, I. Johansson, E. Lundqvist and M. Ingelman-Sundberg, 1993, Molecular basis for rational megaprescribing in ultrarapid hydroxylators of de-brisquine, Lancet 341:63.

    Article  PubMed  CAS  Google Scholar 

  16. M.L. Dahl, I. Johansson, L. Bertilsson, M. ingelman-Sundberg, and F. Sjoqvist, 1995, Ultrarapid hydroxy-lation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis, J. Pharamucol. Exp. Ther. 274:516–520

    CAS  Google Scholar 

  17. J.A. Agundez, M.C. Ledesma, J.M. Ladero, and J. Benitez, 1995, Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population, Clin. Pharmacol Ther. 57:265–269.

    Article  PubMed  CAS  Google Scholar 

  18. E. Aklillu, I. Perssson, L. Bertilsson, F. Rodriques, and M. Ingelmann-Sundberg, 1996, Frequent distribu tion in a black African population carrying duplicated and multiduplicated function CYP2D6 alleles detec tion, J. Pharmacol. Exp. Ther. 278:441–446

    PubMed  CAS  Google Scholar 

  19. I. Johansson, M. Oscarson, Q.Y. Yue, L. Bertilsson, F. Sjoqvist, and M. Ingelman-Sunberg, 1994, Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present for debrisoquine hydroxylation, Mol. Pharmacol. 46:452–459.

    PubMed  CAS  Google Scholar 

  20. H. Yokota, S. Tamura, H. Furuya, S. Kimura, M. Watanabe, I. Kanazawa, I. Kondo, and FJ. Gonzales, 1993, Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism, Pharmacogenetics 3:256–263.

    Article  PubMed  CAS  Google Scholar 

  21. M.L. Dahl, Q.Y. Yue, H.K. Roh, I. Johansson, J. Säwe, F. Sjöqvist and L. Bertilsson, 1995, Genetic analy sis of the CYP2D locus in relation to debrisoquine hydroxylation capacity in Korean, Japanese and Chi nese subjects, Pharmacogenetics 5:159–164.

    Article  PubMed  CAS  Google Scholar 

  22. D.S. Echt, P.R. Liebson, L.B. Mitchell, R.W. Peters, D. Obias-Manno, A.H. Barker, D. Arensberg, A. Baker, L. Friedman, H.L. Greene, M.L. Huther, D.W. Richardson, and the C.AST investigators, 1991, Mor tality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Sup pression Trial, N. Engl. J. Med. 324:781–788.

    Article  PubMed  CAS  Google Scholar 

  23. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators, 1989, Preliminary report: effect of en cainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial in farction, N. Engl. J. Med. 321:406–412.

    Article  Google Scholar 

  24. E. Buchert and R.L. Woosley, 1992, Clinical implications of variable antiarrhythmic drug metabolism, Pharmacogenetics 2:2–11.

    Article  PubMed  CAS  Google Scholar 

  25. L.A. Siddoway, K.A. Thompson, C.B. McAllister, T. Wang, G.R. Wilkinson, D.M. Roden, R.L. Woosley, 1987, Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences, Circulation 75:785–791.

    Article  PubMed  CAS  Google Scholar 

  26. H.K. Kroemer, G. Mikus, T. Kronbach, U.A. Meyer, and M. Eichelbaum, 1989, In vitro characterization of the human cytochrome P-450 involved in polymorphic oxidation of propafenone. Clin. Pharmacol. Ther. 45:28–33.

    Article  PubMed  CAS  Google Scholar 

  27. C. Funck-Brentano, H.K. Kroemer, J.T. Lee, and D.M. Roden, 1990, Propafenone. N. Engl. J. Med. 322:518–525.

    Article  PubMed  CAS  Google Scholar 

  28. H.K. Kroemer, C. Funck-Brentano, D.J. Silberstein, A.J. Wood, M. Eichelbaum, R.L. Woosley, and D.M. Roden, 1989, Stereoselective disposition and pharmacologic activity of propafenone enantiomers, Circula tion 79:1068–1076.

    Article  CAS  Google Scholar 

  29. J.T. Lee, H.K. Kroemer, DJ. Silberstein, C. Funck-Brentano, M.D. Lineberry, A.J. Wood, D.M. Roden, and R.L. Woosley, 1990, The role of genetically determined polymorphic drug metabolism in the beta-blockade produced by propafenone, N. Engl. J. Med. 322:1764–1768.

    Article  PubMed  CAS  Google Scholar 

  30. H.K. Kroemer, C. Fischer, C.O. Meese, M. Eichelbaum, 1991, Enantiomer/enantiomer interaction of (S)-and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxy-lation: in vitro evaluation of the mechanism, Mol. Pharmacol. 40:135–142.

    PubMed  CAS  Google Scholar 

  31. H.K. Kroemer, M.F. Fromm, K. Bühl, H. Terefe, G. Blaschke, and M. Eichelbaum, 1994, An enantiomer-enantiomer interaction of (S)-and (R)-propafenone modifies the effect of racemic drug therapy, Circula tion 89:2396–2400.

    Article  CAS  Google Scholar 

  32. UK Propafenone PSVT Study Group, 1995, A randomized, placebo-controlled trial of propafenone in the prophylaxis of paroxysmal supraventricular tachycardia and paroxysmal atrial fibrillation, Circulation 92:2550–2557.

    Google Scholar 

  33. T. Wang, D.M. Roden, H.T. Wolfenden, R.L. Woosley, A.J. Wood, and G.R. Wilkinson, 1984, Influence of genetic polymorphism on the metabolism and disposition of encainide in man, J. Pharmacol. Exp. Ther. 228:605–611.

    PubMed  CAS  Google Scholar 

  34. D.M. Roden, H.J. Duff, D. Altenbern, and R.L. Woosley, 1982, Antiarrhythmic activity of the O-demethyl metabolite of encainide, J. Pharmacol. Exp. Ther. 221:552–557.

    PubMed  CAS  Google Scholar 

  35. R.L. Woosley, D.M. Roden, G.H. Dai, T. Wang, D. Altenbern, J. Oates, and G.R. Wilkinson, 1986, Co-in heritance of the polymorphic metabolism of encainide and debrisoquin, Clin. Pharmacol. Ther. 39:282–287.

    Article  PubMed  CAS  Google Scholar 

  36. R.L. Woosley, A.J. Wood, and D.M. Roden, 1988, Drug therapy. Encainide, N. Engl. J. Med. 318:1107–1115.

    Article  PubMed  CAS  Google Scholar 

  37. C. Funck-Brentano, G. Thomas, E. Jacqz-Aigrain, J.M. Poirier, T. Simon, G. Bereziat, and P. Jaillon, 1992, Polymorphism of dextromethorphan metabolism: Relationships between phenotype, genotype and response to the administration of encainide in humans, J. Pharmacol. Exp. Ther. 263:780–786.

    PubMed  CAS  Google Scholar 

  38. E. Buchert, and R.L. Woosley, 1992, Clinical implications of variable antiarrhythmic drug metabolism, Pharmacogenetics 2:2–11.

    Article  PubMed  CAS  Google Scholar 

  39. G. Mikus, A.S. Gross, J. Beckmann, R. Hertrampf, U. Gundert-Remy, and M. Eichelbaum, 1989, The in fluence of the sparteine/debrisoquin phenotype on the disposition of flecainide, Clin. Pharmacol. Ther. 45:562–567.

    Article  PubMed  CAS  Google Scholar 

  40. A.S. Gross, G. Mikus, C. Fischer, R. Hertrampf, U. Gundert-Remy, and M. Eichelbaum, 1989, Stereoselec-tive disposition of flecainide in relation to the sparteine/debrisoquine metaboliser phenotype, Br. J. Clin. Pharmacol. 28:555–566.

    Article  PubMed  CAS  Google Scholar 

  41. A.S. Gross, G. Mikus, C. Fischer, and M. Eichelbaum, 1991, Polymorphic flecainide disposition under conditions of uncontrolled urine flow and pH, Eur. J. Clin. Pharmacol. 40:155–162.

    PubMed  CAS  Google Scholar 

  42. C. Funck-Brentano, L. Becquemont, H.K. Kroemer, K. Bühl, N.G. Knebel, M. Eichelbaum, and P. Jaillon, 1994, Variable disposition kinetics and electrocardiographic effects of flecainide during repeated dosing in humans: Contribution of genetic factors, dose-dependent clearance, and interaction with amiodarone, Clin. Pharmacol. Ther. 55:256–269.

    Article  PubMed  CAS  Google Scholar 

  43. M. Eichelbaum and A.S. Gross, 1990, The genetic polymorphism of debrisoquine/sparteine metabolism-clinical aspects, Pharmacol. Ther. 46:377–394.

    Article  PubMed  CAS  Google Scholar 

  44. J. Evers, M. Eichelbaum, and H.K. Kroemer, 1994 Unpredictability of flecainide plasma concentrations in patients with renal failure: Relationship to side effects and sudden death?, Ther. Drug Monil. 16:349–351.

    Article  CAS  Google Scholar 

  45. G. Alvan, L.P. Balant, P.R. Bechtel, A.R. Boobis, L.F. Gram, and K. Pithan, 1990, European Consensus Conference on Pharmacogenetics, Brussels, Belgium: Commission of the European Communities 28, 167.

    Google Scholar 

  46. L. Bertilsson and M.L. Dahl, 1996, Polymorphic drug oxidation: Relevance to the treatment of psychiatric disorder, CNS Drugs 5:200–223.

    Article  CAS  Google Scholar 

  47. B.G. Pollock, B.H. Mulsant, R.A. Sweet, J. Rosen, and J.M. Perel, 1994, Pharmacogenetics of neuroleptics in the elderly, Neuropsychopharmacology 38:918S.

    Google Scholar 

  48. U.A. Meyer, R. Amrein, L.P. Balant, L. Bertilsson, M. Eichelbaum, T.W. Guentert, S. Henauer, P. Jackson, G. Laux, H. Mikkelsen, C. Peck, B.G. Pollock, R. Priest, F. Sjöqvist, and A. Delini-Stula, 1996, Antide-pressants and drug-metabolizing enzymes — Expert group report, ActaPsychiatr. Scand. 93:71–79.

    Article  CAS  Google Scholar 

  49. U. Tacke, E. Leinonen, P. Lillsunde, T. Seppala, P. Arvela, O. Pelkonen, and P. Ylitalo, 1992, Debrisoquine hydroxylation phenotypes of patients with high versus low to normal serum antidepressant concentrations, J. Clin. Psychopharmacol. 12:262–267.

    Article  PubMed  CAS  Google Scholar 

  50. S. Chen, W.H. Chou, R.A. Blouin, Z. Mao, L.L. Humphries, Q.C. Meek, J.R. Neill, W.L. Martin, L.R. Hays, and P.J. Wedlund, 1996, The cytochrome P450 2D6 (CYP2D6) enzyme plymorphism: screening costs and influence on clinical outcomes in psychiatry, Clin. Pharm. Ther. 60:522–534

    Article  CAS  Google Scholar 

  51. E. Spina, C. Gitto, A. Abenoso, G.M. Campo, A.P. Caputi, and E. Perucca, 1997, Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study, Eur. J. Clin. Pharmacol. 51:395–398

    Article  PubMed  CAS  Google Scholar 

  52. F. Sjöqvist, W. Hammer, CM. Ideström, M. Lind, D. Tuck, and M. Asberg, 1967, Plasma levels of monomethylated tricyclic antidepressants and side-effects in man. In: Proceedings of the European Society for the Study of Drug Toxicity. Volume IX, Toxicity and Side-Effects of Psychotropic Drugs. Excerpta Medica International Congress Series No. 145, pp. 246–257.

    Google Scholar 

  53. M.L. Dahl and L. Bertilsson, 1993, Genetically variable metabolism of antidepressants and neuroleptic drugs in man, Pharmacogenetics 3:61–70.

    Article  PubMed  CAS  Google Scholar 

  54. B. Mellström, L. Bertilsson, L. Traskman, D. Rollins, M. Asberg, and F. Sjöqvist, 1979, Intraindividual similarity in the metabolism of amitriptyline and chlorimipramine in depressed patients, Pharmacology 19:282–287.

    Article  PubMed  Google Scholar 

  55. A.E. Balant-Gorgia, L.P. Balant, C. Genet, P. Dayer, J.M. Aeschlimann, and G. Garrone, 1986, Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites, Eur. J. Clin. Pharmacol. 31:449–455.

    Article  PubMed  CAS  Google Scholar 

  56. E. Spina, C. Birgersson, C. von Bahr, O. Ericsson, B. Mellström, E. Steiner, and F. Sjöqvist, 1984, Phenotypic consistency in hydroxylation of desmethylimipramine and debrisoquine in healthy subjects and in hu man liver microsomes, Clin. Pharmacol. Ther. 36:677–682.

    Article  PubMed  CAS  Google Scholar 

  57. E. Spina, E. Steiner, O. Ericsson, and F. Sjöqvist, 1987, Hydroxylation of desmethylimipramine: depend ence on the debrisoquin hydroxylation phenotype, Clin. Pharmacol. Ther. 41:314–319.

    Article  PubMed  CAS  Google Scholar 

  58. M.L. Dahl, L. Iselius, C. Alm, J.O. Svensson, D. Lee, I. Johansson, M. Ingelman-Sundberg, and F. Sjöqvist, 1993, Polymorphic 2-hydroxylation of desipramine: A population and family study, Eur. J. Clin. Pharmacol. 44:445–450.

    Article  PubMed  CAS  Google Scholar 

  59. L. Bertilsson and A. Aberg-Wistedt, 1983, The debrisoquine hydroxylation test predicts steady-state plasma levels of desipramine, Br. J. Clin. Pharmacol. 15:388–390.

    Article  PubMed  CAS  Google Scholar 

  60. K. Brasen and L.F. Gram, 1988, First-pass metabolism of imipramine and desipramine: impact of the sparteine oxidation phenotype, Clin. Pharmacol. Ther. 43:400–406.

    Article  Google Scholar 

  61. R.E. Bluhm, G.R. Wilkinson, R. Shelton, and R.A. Branch, 1993, Genetically determined drug-metabo lizing activity and desipramine-associated cardiotoxicity: A case report, Clin. Pharmacol. Ther. 53:89–95.

    Article  PubMed  CAS  Google Scholar 

  62. L. Bertilsson, A. Aberg-Wistedt, L.L. Gustafsson, and C. Nordin, 1985, Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther. Drug Monit. 7:478–480.

    Article  PubMed  CAS  Google Scholar 

  63. K.K. Nielsen, K. Brasen, M.G.J. Hansen, and L.F. Gram, 1994, Single-dose kinetics of clomipramine: Re lationship to the sparteine and S-mephenytoin oxidation polymorphisms, Clin. Pharmacol. Ther. 55:518–527.

    Article  PubMed  CAS  Google Scholar 

  64. M. Jerling, M.L. Dahl, A. Aberg-Wistedt, B. Liljenberg, N.E. Landell, L. Bertilsson, and F. Sjöqvist, 1996, The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol, Clin. Pharmacol. Ther. 59:423–428.

    Article  PubMed  CAS  Google Scholar 

  65. K. Linnet and O. Wiborg, 1996, Steady-state serum concentrations of the neuroleptic perphenazine in rela tion to CYP2D6 genetic polymorphism. Clin. Pharmacol. Ther. 60:41–47.

    Article  PubMed  CAS  Google Scholar 

  66. A. Llerena, C. Alm, M.L. Dahl, B. Ekqvist, and L. Bertilsson, 1992, Haloperidol disposition is dependent on debrisoquine hydroxylation phenotype, Ther. Drug Monit. 14:92–97.

    Article  PubMed  CAS  Google Scholar 

  67. S. Nyberg, L. Farde, C. Halldin, M.L. Dahl, L. Bertilsson, (1995) D-2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am. J. Psychiatry 152:173–178.

    PubMed  CAS  Google Scholar 

  68. Q.Y. Yue, J.O. Svensson, C. Alm, F. Sjöqvist, and J. Säwe, 1989, Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation, Br. J. Clin. Pharmacol. 28:639–645.

    Article  PubMed  CAS  Google Scholar 

  69. S.H. Sindrup and K. Brasen, 1995, The pharmacogenetics of codeine hypoalgesia, Pharmacogenetics 5:335–346.

    Article  PubMed  CAS  Google Scholar 

  70. S.H. Sindrup, K. Brøsen, P. Bjerring, L. Arendt-Nielsen, U. Larsen, H.R. Angelo, and L.F. Gram, 1990, Co deine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine, Clin. Pharmacol. Ther. 48:686–693.

    Article  PubMed  CAS  Google Scholar 

  71. J. Desmeules, M.P. Gascon, P. Dayer, and M. Magistris, 1991, Impact of environmental and genetic factors on codeine analgesia, Eur. J. Clin. Pharmacol. 41:23–26.

    Article  PubMed  CAS  Google Scholar 

  72. Y. Caraco, J. Sheller, and A.J.J. Wood, 1996, Pharmacogenetic determination of the effects of codeine and prediction of drug interactions, J. Pharmacol. Exp. Ther. 278:1165–1174.

    PubMed  CAS  Google Scholar 

  73. K. Persson, S. Sjöström, I. Sigurdardottir, V. Molnar, M. Hammarlund-Udenaes, and A. Rane, 1995, Pa tient-controlled analgesia (PCA) with codeine for postoperative pain relief in ten extensive metabolisers and one poor metaboliser of dextromethorphan, Br. J. Clin. Pharmacol. 39:182–186.

    Article  PubMed  CAS  Google Scholar 

  74. A.P.R. Küpfer, S. Ward, S. Schenker, R. Preisig, and R.A. Branch, 1984. Stereoselective metabolism and pharmacogenetic control of 5-phenyl-5-ethylhydantoin (Nirvanol) in humans, J. Pharmacol. Exp. Ther. 230:28–33

    PubMed  Google Scholar 

  75. P.J. Wedlund, W.S. Aslanian, E. Jacqz, C.B. McAllister, R.A. Branch, and G.R. Wilkinson, 1985, Phenotypic differences in mephenytoin pharmacokinetics in normal subjects, J. Pharmacol. Exp. Ther. 234:662–669

    PubMed  CAS  Google Scholar 

  76. D.A.P. Evans, 1993, Genetic factors in drug therapy. Clinical and molecular pharmacogenetics. Cambridge: Cambridge Univ. Press.

    Google Scholar 

  77. G.R. Wilkonson, F.P. Guengerich, and R.A. Branch, 1992, Genetic polymorphism if S-mephenytoin hy droxylation, in: Pharmacogenetics of Drug Metabolism, (W. Kalow, ed.) pp. 657–685, Pergamon, New York.

    Google Scholar 

  78. M. Romkes, M.B. Faletto, J.A. Blaisdell, J.L. Raucy, and J.A. Goldstein, 1991, Cloning and expressing of complementary DNAs for multiple members of the human cytochrome P450IIC subfamiliy, Biochemistry 30:3247–3255.

    Article  PubMed  CAS  Google Scholar 

  79. S.A. Wrighton, J.C. Stevens, G.W. Becker, and M. VandenBranden, 1993, Isolation and characterization of human liver cytochrome P4502C19: correlation between 2C19 and S-mephenytoin 4′-hydroxylation, Biochem. Biophys. 306:240–245.

    Article  CAS  Google Scholar 

  80. J.A. Goldstein, M.B. Faletto, M. Romkes-Sparks, T. Sullivan, S. Kitareewan, J.L. Raucy, J.M. Lasker, and B.I. Ghanayem, 1994, Evidence fora role for2C19 in metabolism of S-mephenytoin in humans, Biochemistry 33:1743–1752.

    Article  PubMed  CAS  Google Scholar 

  81. C. Ged, D.R. Umbenhauer, T.M. Beilew, R.W. Bork, P. Srivastave, N. Shinriki, R.S. Lloyd, and F.P. Guengerich, 1994, Characterisation of cDNAs, mRNAs, and proteins related to humans liver microsomal cytochrome P-450 (S)-mephenytoin 4′-hydroxylase. Biochemistry 27:6929–6940.

    Article  Google Scholar 

  82. R.R. Meehan, J.R. Gosden, D. Rout, N.D. Hastle, and T. Friedberg, 1988, Human cytochrome P-450 PB-1: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am. J. Hum. Genet. 42:26–37.

    PubMed  CAS  Google Scholar 

  83. S.M.F. de Moreis, H. Schweikl, J. Blaisdell, and J.A. Goldstein, 1993, Gene structure and upstream regula tion regions of human CYP2C9 and CYP2C18. Biochem. Biophys. Res. Commun. 194:194–201.

    Article  Google Scholar 

  84. J.A. Goldstein and S.M.F. de Moreis, 1994, Biochemistry and molecular biology of the human CYP2C subfamily, Pharmacogenelics 4:285–299.

    Article  CAS  Google Scholar 

  85. S.M.F. de Moreis, G.R. Wilkinson, J. Blaisdell, K. Nakamura, U.A. Meyer, and J.A. Goldstein, 1994, The major defect responsible for the polymorphism of S-mephenytoin metabolism in humans, J. Biol. Chem. 269:15419–15422.

    Google Scholar 

  86. S.M.F. de Moreis, G.R. Wilkinson, J. Blaisdell, U.A. Meyer, K. Nakamura, and J.A. Goldstein, 1994, Indentification of a new genetic defect responsible for the polymorphism of S-mephenytoin metabolism in Japanese. Mol. Pharmacol. 46:594–598

    Google Scholar 

  87. L. Bertilsson, 1995, Geographical/interracial differences in polymorphic drug oxidation. Current state of the knowledge of cytochromes P450(CYP)2D6 and 2C19. Clin. Pharmacokin. 29:192–209.

    Article  CAS  Google Scholar 

  88. M.F. Fromm, H.K. Kroemer, and M. Eichelbaum, 1997, Impact of P450 genetic polymorphism on the firstpass extraction of cardiovascular and neuroactive drugs, Adv. Drug Delivery Reviews 27:171–199.

    Article  CAS  Google Scholar 

  89. U.A. Meyer and U.M. Zanger, 1997, Molecular Mechanisms of genetic polymorphisms of drug metabo lism. Annu. Rev. Pharmacol. Toxicol. 37:269–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eichelbaum, M. (1999). Clinical Aspects of Polymorphic Drug Metabolism in Humans. In: Arinç, E., Schenkman, J.B., Hodgson, E. (eds) Molecular and Applied Aspects of Oxidative Drug Metabolizing Enzymes. NATO ASI Series, vol 303. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4855-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4855-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7202-8

  • Online ISBN: 978-1-4615-4855-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics