Skip to main content

Abstract

The growth and metastasis of solid tumors are dependent on the ability of tumor cells to induce angiogenesis [1]. Angiogenesis, the formation of new blood vessels from pre-existing ones, involves endothelial cell proliferation, motility, and tubular differentiation. It is known that tumor cells can secrete a variety of angiogenic factors, such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), to stimulate angiogenesis. Tumor cells also produce angiogenesis inhibitors such as thrombospondin and angiostatin to control angiogenesis. The balance between angiogenesis stimulators and inhibitors determines the angiogenicity of tumor cells [2]. Acquisition of the ability to stimulate angiogenesis by tumor cells is an integral part of tumorigenesis. Activated oncogenes, such as ras, or inactivated tumor suppressor genes, such as p53, not only increase mitogenesis and prevent apoptosis in tumor cells, but also lead to the development of an angiogenic phenotype [for review,.3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J., and Shing, Y. Angiogenesis. J. Biol. Chem., 267: 10931–10934, 1992.

    PubMed  CAS  Google Scholar 

  2. Hanahan D. and Folkman J. 1996. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353–364

    Google Scholar 

  3. Vartanian, R. K., and Weidner, N. EC proliferation in prostatic carcinoma and prostatic hyperplasia: correlation with Gleason’s score, microvessel density, and epithelial cell proliferation. Lab. Invest., 73: 844–850, 1995.

    PubMed  CAS  Google Scholar 

  4. Wakui, S., Furusato, M., Itoh, T., Sasaki, H., Akiyama, A., Kinoshita, I., Asano, K., Tokuda, T., Aizawa, S., and Ushigome, S. Tumor angiogenesis in prostatic carcinoma with and without bone marrow metastasis: a morphometric study. J. Pathol., 168: 257–262, 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Weidner, N., Carroll, P. R., Flax, J., Blumenfeld, W., and Folkman, J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol., 143: 401–409, 1993.

    PubMed  CAS  Google Scholar 

  6. Vukanovic, J., and Isaacs, J. T. Human prostatic cancer cells are sensitive to programed (apoptotic) death induced by the antiangiogenic agent linomide. Cancer Res., 55: 3517–3520, 1995.

    PubMed  CAS  Google Scholar 

  7. Yamaoka, M., Yamamato, T., Ikeyama, S., Sudo, K., and Fujita, T. Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res., 53: 5233–5236, 1993.

    PubMed  CAS  Google Scholar 

  8. Campbell, S. C. Advances in angiogenesis research: relevance to urological oncology. J. Urol., 158: 1663–1674, 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Gao, X., Grignon, DJ., Chbihi, T., Zacharek, A., Chen, Y.Q., Sakr, W., Porter, A.T., Crissman, J.D., Pontes, J.E., Powell, I.J., and Honn, K. V. Elevated 12-lipoxygenase mRNA expression correlates with advanced stage and poor differentiation of human prostate cancer. Urology 46: 227–237, 1995.

    Article  PubMed  CAS  Google Scholar 

  10. Funk, C. D., Furci, L., and FitzGerald, G. A. Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase. Proc. Natl. Acad. Sci. USA 87:5638-5642, 1990.

    Google Scholar 

  11. Diglio, C. A., Liu, W., Grammas, P., Giacomelli, F., and Wiener, J. Isolation and characterization of cerebral resistance vessel endothelium in culture. Tissue and Cell 25: 833–846, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Hagmann, W., Gao, X., Timar, J., Chen, Y. Q., Strohmaier, A. R., Fahrenkopf, C., Kagawa, D., Lee, M., Zacharek, A., and Honn, K. V. 12-Lipoxygenase in A431 cells: genetic identity, modulation of expression, and intracellular localization. Exp. Cell Res., 228: 197–205, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Yamaoka, M., Yamamoto, T., Ikeyama, S., Sudo, K., Fujita, T. Angiogenesis inhibitor TNP-470 (AGM-1470) potently inhibits the tumor growth of hormone-independent human breast and prostate carcinoma cell lines. Cancer Res., 53: 5233–5236, 1993.

    PubMed  CAS  Google Scholar 

  14. Ito, Y., Iwamoto, Y., Tanaka, K., Okuyama, K., and Sugioka, Y. A quantitative assay using basement membrane extracts to study tumor angiogenesis in vivo. Int. J. Cancer 67:148–152, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Tang, D. G., Renaud, C., Stojakovic, S., Diglio, C. A., Porter, A., and Honn, K. V. 12(S)-HETE is a mitogenic factor for microvascular ECs: Its potential role in angiogenesis. Biochem. Biophys. Res. Commun., 211: 462–468, 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Honn, K. V., Tang, D. G., Grossi, L, Duniec, Z. M., Timar, J., Renaud, C., Leithauser, M., Blair, I., Johnson, C. R., Diglio, C. A., Kimler, V. A., Taylor, J. D., and Marnett, L. J. Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Res., 54: 565–574, 1994.

    PubMed  CAS  Google Scholar 

  17. Tang, D. G., Chen, Y.Q., Diglio, C. A., and Honn, K. V. Transcriptional activation of EC integrin av by protein kinase C activator 12(S)-HETE. J. Cell Sci., 108: 2629–2644, 1995.

    PubMed  CAS  Google Scholar 

  18. Brooks, P. G, Clark, R. A. F., and Cheresh, D. A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264: 569–571, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Brooks, P. C, Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., and Cheresh, D. A. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest, 96:1815–1822, 1995.

    Article  PubMed  CAS  Google Scholar 

  20. Kumar, R., Yoneda, J., Bucana, C. D., and Fidler, I. J. Regulation of distinct steps of angiogenesis by different angiogenic molecules. Int. J. Oncol., 12:749–757, 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nie, D. et al. (1999). Platelet-Type 12-Lipoxygenase Regulates Angiogenesis in Human Prostate Carcinoma. In: Honn, K.V., Marnett, L.J., Nigam, S., Dennis, E.A. (eds) Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 4. Advances in Experimental Medicine and Biology, vol 469. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4793-8_90

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4793-8_90

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7171-7

  • Online ISBN: 978-1-4615-4793-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics