Skip to main content

Generation of α1,3Galactosyltransferase Deficient Mice

  • Chapter
α-Gal and Anti-Gal

Part of the book series: Subcellular Biochemistry ((SCBI,volume 32))

  • 168 Accesses

Abstract

All mammals, with the exception of apes, Old World monkeys, and humans possess a functional α1,3GT gene (Galili et al., 1990). Microsomal preparations from tissues of mammalian species as divergent as pigs, cows, New World monkey and mice all contain α1,3GT activity, capable of transferring Gal onto terminal N-acetyllactosamine containing glycolipids and glycoproteins (Thall et al., 1991a). As no other mammalian α 1,3GT genes have been cloned, it was assumed but not proven that this α 1,3GT gene is responsible for the synthesis of all α-gal epitopes in mammals other than apes, Old World Monkeys and humans. This enzymatic activity is distinct from the blood group B α1,3GT, which requires a terminal α 1,2-Fuc linked to N-acetyllactosamine as the acceptor structure and is active only in primates (Elices et al., 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barondes, S.H., Cooper, D.N., Gitt, M.A., and Leffler, H., 1994.Galectins. Structure and function of a large family of animallectins. J. Biol. Chem.. 269: 20807–20810.

    PubMed  CAS  Google Scholar 

  • Betz, U.A., Vosshenrich, C.A., Rajewsky, K., and Muller.W., 1996. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curro Biol., 6: 1307–1316.

    Article  CAS  Google Scholar 

  • Bleil, J.D. and Wassarman, P.M., 1988. Galactose at the nonreducing terminus ofO-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein’s sperm receptor activity. Proc. Natl. Acad. Sci., 85: 6778–6782.

    Article  PubMed  CAS  Google Scholar 

  • Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F., and Stewart, A.F., 1996. Different thennostabilities ofFLP and Cre recombinases: implications for applied site-specific recombination, Nucleic Acids Res., 24: 4256–4262.

    Article  PubMed  CAS  Google Scholar 

  • Colson, Y.L., Wren, S.M., Schuchert, M.J., Patrene, K.D., Johnson, P.C., Boggs, S.S., and Ildstad, S.T., 1995. A nonlethal conditioning approach to achieve durable multilineage mixed chimerism and tolerance across major. minor. and hematopoietic histocompatibility barriers. J. Immunol., 155: 4179–4188.

    PubMed  CAS  Google Scholar 

  • Cooper, O.K., Good, A.H., Koren, E., Oriol, R., Malcolm, AJ., Ippolito, R.M., Neethling, F.A., Yeo Y., Romano, E., and Zuhdi, N., 1993. Identification of alpha-galactosyl and other carbohydrate epitopes that are bound by human anti-pig antibodies: relevance to discordant xenografting in man. Transpl. lmmunol., 1: 198–205.

    Article  CAS  Google Scholar 

  • Cooper, O.K. and Thall, A.D., 1997. Xenoantigens and xenoantibodies: their modification, World J. Surg., 21: 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, R.D. and Mattox, S.A., 1988. Retinoic acid-induced differentiation of the mouse teratocarcinoma cell line F9 is accompanied by an increase in the activity of UDP-galactose: beta-D-galactosyl-alpha 1,3-galactosyltransferase. J. Biol. Chem., 263: 511–519.

    PubMed  CAS  Google Scholar 

  • Doetschman, T.e., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. J.,1985,The in vitro development of blastocyst-derived embryonic stem cel1lines: formation of visceral yolk sac, blood islands and myocardium, Embryol. Exp. Morph., 87: 27–45.

    CAS  Google Scholar 

  • Elices, MJ., Blake, D.A., and Goldstein, I.J., 1986. Purification and characterization of a UDPGal: beta-D-Gal(1.4)-D-GIcNAca(1.3)-galactosyltransferase from Ehrlich ascites tumor cells, J. Biol. Chem., 261: 6064–6072.

    PubMed  CAS  Google Scholar 

  • Etienne-Decerf, J., Malaise, M., Mahieu, P., and Winand, R., 1987. Elevated anti-alpha-galactosyl antibody titres. A marker of progression in autoimmune thyroid disorders and in endocrine ophthalmopathy? Acta Endocrinol. (Copenh)., 115: 67–74.

    CAS  Google Scholar 

  • Galili, U., Mandrell, R.E., Harndeh, R.M., Shohet, S.B. and Griffis, IM., 1988b. Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora, Infect. Immun., 57: 1730–1737.

    Google Scholar 

  • Galili, U., Rachrnilewitz, E.A., Peleg, A. and Flechner, I., 1984,Aunique natural human IgG antibody with anti-alpha-galactosyl specificity. J. Exp. Med., 160: 1519–1531.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U. and Swanson, K., 1991, Gene sequences suggest inactivation of α-l,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys, Proc. Natl. Acad. Sci., 88: 7401–7404.

    Article  PubMed  CAS  Google Scholar 

  • Galili, U., Thall, A., and Macher, B.A., 1990, Evolution of the Galαl®3Galβl®4GlcNAc epitope in mammals, Trends in Glycoscience and Glycolechnology, 2: 308–318.

    Google Scholar 

  • Galili, U., Shohet, S.B., Kobrin, E., Stults, C.L. and Macher, B.A., 1988a, Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells,J. Biol. Chem., 263: 17755–17762.

    PubMed  CAS  Google Scholar 

  • Grimstad, I.A. and Bosnes, V., 1987, Cell-surface laminin-like molecules and alpha-D-galactopyranosyl end-groups of cloned strongly and weakly metastatic murine fibrosarcoma cells. Int. J. Cancer, 40: 505–510.

    Article  PubMed  CAS  Google Scholar 

  • Grimstad, I.A., Varani J., and McCoy, J.P. Jr, 1984, Contribution of α-D-galactopyranosyl end groups to attachment of highly and low metastatic murine fibrosarcoma cells to various substrates, Exp. Cell Res., 155: 345–358.

    Article  PubMed  CAS  Google Scholar 

  • Henion, T.R., Macher, B.A., Anaraki, F., and Galili U., 1994, Defining the minimal size of catalytically active primate alpha l,3galactosyltransferase: structure-function studies on the recombinant truncated enzyme, Glycobiology, 4: 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Inverardi L, Clissi B, Stolzer AL, Bender JR, Sandrin MS, and Pardi R., 1997, Human natural killer lymphocytes directly recognize evolutionarily conserved oligosaccharide ligands expressed by xenogeneic tissues, Transplantation, 63: 1318–1330.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D.S., Wright, W.W., Shaper, J.H., Hokke, C.H., Van den Eijnden, D.H., and Joziasse, D.H., 1998, Murine sperm-zona binding, a fucosyl residue is required for a high affinity sperm-binding ligand. A second site on sperm binds a nonfucosylated, betα-galactosyl-capped oligosaccharide, J. Biol. Chem., 273: 1888–1895.

    Article  PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, J.H., Jabs, E.W., and Shaper, N.L, 1991, Characterization of an α 1,3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed psuedogene, J. Biol. Chem., 266: 6991–6998.

    PubMed  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, N.L., Shaper, J.H., and Kozak, C.A., 1991, Gene for murine α 1,3-galactosyltrasferase is located in the centromeric region of chromosome 2. Soma.t Cell Mol.Genet, 17: 201–205.

    Article  CAS  Google Scholar 

  • Joziasse, D.H., Shaper, N.L., Kim, D., Van den Eijnden, D.H., and Shaper, J.H., 1992, Murine α 1,3-galactosyltransferase. A single gene locus specifies four isoforms of the enzyme by alternative splicing, J. Biol. Chem., 267: 5534–5541.

    PubMed  CAS  Google Scholar 

  • Kim, M., Rao, M.V., Tweardy, D.J., Prakash, M., Galili, U., and Gorelik, E., 1993, Lectin-induced apoptosis of tumour cells. Glycobiology, 3:447–453.

    Article  PubMed  CAS  Google Scholar 

  • Knibbs, R.N., Agrwal, N., Wang, J.L., and Goldstein, I.J., 1993, Carbohydrate-binding protein 35. II. Analysis of the interaction of the recombinant polypeptide with saccharides, J. Biol. Chem., 268: 14940–14947.

    PubMed  CAS  Google Scholar 

  • Larsen R.D., Riverα-Marrero C.A., Ernst, L.K., Cummings R.D., and Lowe, J.B., 1990, Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(l,4)-D-GlcNac α(l,3)-galactosyltransferase cDNA, J. Biol. Chem., 265:7055–7061.

    PubMed  CAS  Google Scholar 

  • Larsen, R.D., Rajan, V.P., Ruff, M.M., Kukowskα-Latallo, J., Cummings, R.D., and Lowe, J.B., 1989 Isolation of a cDNA encoding a murine UDP-galactose:β-D-galactosyl-l,4-N-acetyl-D-glucosaminide α-l,3-galactosyltransferase: Expression cloning by gene transfer, Proc. Natl. Acad. Sci. USA, 86: 8227–8231.

    Article  PubMed  CAS  Google Scholar 

  • Litscher, E. S., Juntunen, K., Seppo, A., Penttila, L., Niemela R., Renkonen, O., and Wassarman, P. M., 1995, Oligosaccharide constructs with defined structures that inhibit binding of mouse sperm to unfertilized eggs in vitro, Biochemistry, 34: 4662–4669.

    Article  PubMed  CAS  Google Scholar 

  • Maddox, D.E., Shibata, S., Goldstein, I.J., 1982, Stimulated macrophages express a new glycoprotein receptor reactive with Griffonia simplicifolia 1-B4 isolectin, Proc. Natl. Acad. Sci. USA, 79:166–170.

    Article  PubMed  CAS  Google Scholar 

  • Marth, J.D., 1996. Recent advances in gene mutagenesis by site-directed recombination, J. Clin. Invest., 97: 1999–2002.

    Article  PubMed  CAS  Google Scholar 

  • McBurney, M.W., Sutherland, L.C., Adra, B., Leclair, B., Rudnicki, M.A., and Jardine, K.X., 1991. The mouse Pgk-1 gene promoter contains an upstream activator sequence. Nucleic Acids Res., 19:5755–5761.

    Article  PubMed  CAS  Google Scholar 

  • McCoy, J.P. Jr., Varani, J., and Goldstein, I.J., 1983. Enzyme-linked lectin assay (ELLA): useof alkaline phosphatase-conjugated Griffonia simplicifolia B4 isolectin for the detection of alpha-D-galactopyranosyl end groups. Anal. Biochem., 130: 437–444.

    Article  PubMed  CAS  Google Scholar 

  • McEver, R.P., Moore, K.L., and Cummings, R.D., 1995. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J. Biol. Chem., 270: 11025–11028.

    Article  PubMed  CAS  Google Scholar 

  • Mc Whir, J., Schnieke, A.E., Ansell, R., Wallace, H., Colman, A., Scott, A.R., and Kind, A.J., 1996. Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background. Nat. Genet., 14: 223–226.

    Article  CAS  Google Scholar 

  • Miller, D.J. Macek, M.B., and Shur, B.D.,1992. Complementarity between sperm surface betα-1.4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. Nature, 357: 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Moody, D.B., Reinhold, B.B., Guy, M.R., Beckman, E.M., Frederique, D.E., Furlong, S.T., Ye, S., Reinhold, V.N., Sieling, P.A., Modlin, R.L., Besra, G.S., and Porcelli, S.A., 1997, Structural requirements for glycolipid antigen recognition by CD 1 b-restricted T cells. Science, 278: 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Niemela, R., Penttila, L., Seppo, A., Helin, J., Leppanen, A., Rabina, J., Uusitalo, L., Maaheimo, H., Taskinen, J., Costello C.E., and Renkonen, O., 1995. Enzyme-assisted synthesis of a bivalent high-affinity dodecasaccharide inhibitor of mouse gamete adhesion. The length of the chains carrying distal α 1,3-bonded galactose residues is critical. FEBS Leu. 367: 67–72.

    Article  CAS  Google Scholar 

  • Ogiso, M., Hidehiko, S.,and Hoshi, M., 1998. Localization of Lew is sialyl-Lewis and α-galactosyl epitopes on glycosphingolipids in lens tissues. Glycobiologv. 8: 95–105.

    Article  CAS  Google Scholar 

  • Platt, J.L., 1994. A perspective on xenograft rejection and accommodation. Immunol. Rev., 141: 127–149.

    Article  PubMed  CAS  Google Scholar 

  • Russell, P.S., Chase, C.M., and Colvin, R.B., 1997. Alloantibody-and T cell-mediated immunity in the pathogenesis of transplant arteriosclerosis: lack of progression to sclerotic lesions in B cell-deficient mice. Transplantation. 64: 1531–1536.

    Article  PubMed  CAS  Google Scholar 

  • Sandrin, M.S., Vaughan, H.A., Dabkowski, P.L., and McKenzie, I.F.C., 1993. Anti-pig IgM antibodies in human serum react predominantly with Gal(α1–3)Gal epitopes, Proc. Natnl Acad. Sci., 90: 11391–11395.

    Article  CAS  Google Scholar 

  • Sandrin, M.S., Vaughan, H.A., Xing, P.-X., and McKenzie, I.F.C., 1997. Natural anti-Galα 1.3Gal antibodies react with human mucin peptides. Glycoconj. J., 14: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Simon, P.M., Neethling, F.A., Taniguchi, S., Goode, P.L., Zopf, D., Hancock, W.W., and Cooper, D.K., 1998. Intravenous infusion of Gal alpha 1-3Gal oligosaccharides in baboons delays hyperacute rejection of porcine heart xenografts. Transplantation. 65: 346–353.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.F., Larsen, R.D., Mattox, S., Lowe, J.B., and Cummings, R.D., 1990, Transfer and expression of a murine UDP-Gal:β-D-Gal-α-1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells. J. Biol. Chem., 265: 6225–6234.

    PubMed  CAS  Google Scholar 

  • Strahan, K.M., Gu, F., Preece, A.F., Gustavsson, I., Andersson, L., and Gustafsson, K., 1995, cDNA sequence and chromosome localization of pig alpha 1.3 cDNA sequence and chromosome localization of pig alpha 1.3galactosyltransferase. Immunogenetics. 41: 101–105.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, E. and Naiki, M., 1984. Heterophile antibodies to rabbit erythrocytes in human sera and identification of the antigen as a glycolipid. J. Biochem., 95: 103–108.

    PubMed  CAS  Google Scholar 

  • Tearle, R.G., Tange, M.J., Zannettino, Z.L., Katerelos, M., Shinkel, T.A., Van Denderen, B.J., Lonie, A.J., Lyons, I., Nottle, M.B., Cox, T., Becker, C., Peura, A.M., Wigley, P.L., Crawford, R.J., Robins, A.J., Pearse, M.J., and d’Apice, A.J., 1996, The α-1,3-galactosyltransferase knockout mouse. Implications for xenotransplantation, Transplantation, 61: 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Thall, A., Etienne-Decerf, J., Winand, R.J., and Galili, U., 1991a, The α-galactosyl epitope on mammalian thyroid cells, Acta Endocrinologica, 124: 692–699.

    PubMed  CAS  Google Scholar 

  • Thall, A., Etienne-Decerf, J., Winand, R.J., and Galili, U., 1991b, The α-galactosyl epitope on human normal and autoimmune thyroid cells: possible relationship to autoimmunity, Autoimmunity, 10: 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Thall, A., Murphy, H., and Lowe, J.B., 1996, α1,3-galactosyltransferase deficient mice produce cytotoxic natural anti-Gal antibodies. Transplantation Proceedings, 28:561–62.

    Google Scholar 

  • Tybulewicz VL, Crawford CE, Jackson PK, Branson RT, and Mulligan, R.C., 1991, Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene, Cell, 65:1153–1163.

    Article  PubMed  CAS  Google Scholar 

  • Vanhove, B., Goret, F., Soulillou, J.P., and Pourcel, C., 1997, Porcine alphα 1,3-galactosyltransferase: tissue-specific and regulated expression of splicing isoforms, Biochim Biophys Acta, 1356: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, H.A., Loveland, B.E., and Sandrin, M.S., 1994, Gal a(l,3)Gal is the major xenoepitope expressed on pig endothelial cells recognized by naturally occurring cytotoxic human antibodies. Transplantation, 58: 879–882.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman, P. M., 1988, Zona pellucida glycoproteins, Ann. Rev. Biochem. 57, 415–22.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R.L., Hilton, D.J., Pease, S., Willson, T.A., Stewart, C.L., Gearing, D.P., Wagner, E.F., Metcalf, D., Nicola, N.A., and Gough, N.M., 1988, Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells, Nature, 336:684–687.

    Article  PubMed  CAS  Google Scholar 

  • Wong, W., Morris, P.J., and Wood, K.J., 1996, Syngeneic bone marrow expressing a single donor class I MHC molecule permits acceptance of a fully allogeneic cardiac allograft. Transplantation, 62:1462–1468.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, F.-i., Clausen, H., White, T., Marken, J., and Hakamori, S.-i., 1990, Molecular genetic basis of the histo-blood group ABO system. Nature, 345: 229–233.

    Article  PubMed  CAS  Google Scholar 

  • Yong, Y.-G., de Goma, E., Ohdan, H., Bracy, J.L., Xu, Y., lacomini, J., Thall, A.D., and Sykes, M., 1998, Tolerization of anti-Galα 1–3Gal natural antibody-forming B cells by induction of mixed chimerism, J. Exp. Med., 187: 1335–1342.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thall, A.D. (1999). Generation of α1,3Galactosyltransferase Deficient Mice. In: Galili, U., Avila, J.L. (eds) α-Gal and Anti-Gal. Subcellular Biochemistry, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4771-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4771-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7160-1

  • Online ISBN: 978-1-4615-4771-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics