Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 463))

Abstract

Naturally occurring pteridines in eukaryotic systems usually contain 2-amino, 4-hydroxy 6-alkyl substituents composed of either a methylene-p-aminobenzoylglutamate (or polutamate) or a dihydroxypropyl group. The former class are known collectively as the folates and occur widely as reduced and 5-alkylated derivatives, in which form they participate in important metabolic one-carbon transfers (Blakley, 1984). The latter, known as biopterin,, also occurs in reduced forms and is an important cofactor in aromatic amino acid hydroxylations en route to the catecholamines (Shiman, 1985; Kaufman and Kaufman, 1985; n and Lovenberg, 1985) and in the nitrite synthase pathway (Marletta,, 1993). Dihydrofolate reductase (DHFR), dihydropteridine reductase (DHPR) and pteridine reductase (PTR1), best characterised from Leishmania, are three enzymes that initiate the reduction of a pteridine in association with a reduced dinucleotide cofactor. Their comparative reaction pathways are illustrated in Figure 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Armarego, W. L. F. (1979) Hydrogen transfer from 4-R and 4-S (4-3H) NADH in the reduction of d,l-cis-6,1-di-methyl-6,7 (8H)-dihydropterin with dihydropteridine reductase from human liver and sheep liver. Biochem. Biophys. Res. Commun. 89, 246–249.

    Article  PubMed  CAS  Google Scholar 

  • Baccanari, D., Phillips, A., Smith, S., Sinski, D., and Burchall, J. (1975) Purification and properties of Escherichia coli dihydrofolate reductase. Biochemistry 14, 5267–5273.

    Article  PubMed  CAS  Google Scholar 

  • Blakley, R. L. (1984) Benkovic, S. J. New York, John Wiley & Sons

    Google Scholar 

  • Bystroff, C, Oatley, S. J., and Kraut, J. (1990) Crystal structure of Escherichia coli dihydrofolate reductase: the NADP+ holoenzyme and the folate-NADP+ ternary complex. Substrate binding and a model for the transition state. Biochemistry 29, 3263–3277.

    Article  PubMed  CAS  Google Scholar 

  • Chang, G., Shiao, M., Liaw, J., and Lee, H. (1989) Periodate-oxidized 3-aminopyridine adenine dinucleotide phosphate as a fluorescent affinity lable for pigeon liver malic enzyme. J. Biol Chem. 264, 280–287.

    PubMed  CAS  Google Scholar 

  • Färber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F., Jr., and Wolff, J. A. (1948) Temporary remissions in acute leukemia in children. N. E. J. Med. 238, 787–793.

    Article  Google Scholar 

  • Filman, D. J., Bolin, J. T., Matthews, D. A., and Kraut, J. (1982) Crystal structures of Escherichia coli and Lactoba-cillus casei dihydrofolate reductase refined at 1. 7 A resolution. II. Environment of bound NADPH and implications for catalysis. J Biol Chem 257, 13663–13672.

    PubMed  CAS  Google Scholar 

  • Jörnvall, H., Persson, B., Krook, M., Atrian, S., Gonzàlez-Duarte, R., Jeffery, J., and Ghosh, D. (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34, 6003–6013.

    Article  PubMed  Google Scholar 

  • Kaufman, S. and Kaufman, E. E. (1985) Tyrosine Hydroxylase. In: Folates and Pterins, Vol. 2, 251–352. Edited by Blakley, R. L. and Benkovic, S. J. New York, Wiley Interscience.

    Google Scholar 

  • Kuhn, D. M. and Lovenberg, W. (1985) Tryptophan Hydroxylase. In: Folates and Pterins, Vol. 2, 353–382. Edited by Blakley, R. L. and Benkovic, S. J. New York, Wiley Interscience.

    Google Scholar 

  • Luba, J., Nare, B., Liang, P.-H., Anderson, K. S., Beverley, S. M., and Hardy, L. (1998) Leishmania major pteridine reductase 1 belongs to the short chain dehydrogenase family: Stereochemical and kinetic evidence. Biochemistry 37, 4093–4104.

    Article  PubMed  CAS  Google Scholar 

  • Marietta, M. A. (1993) Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268, 12231–12234.

    Google Scholar 

  • Nare, B., Hardy, L. W., and Beverley, S. M. (1997) The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J. Biol. Chem. 272, 13883–138

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz-Weiss, P., Sessa, W. C., Milstien, S., Kaufman, S., Watson, C. A., and Prober, J. S. (1994) Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific activity. J. Clin. Invest. 93, 2236–2243.

    Article  PubMed  CAS  Google Scholar 

  • Shiman, R. (1985) Phenylalanine Hydroxylase and Dihydropteridine Reductase. In: Folates and Pterins, Vol. 2, 179–249. Edited by Blakley, R. L. and Benkovic, S. J. New York, Wiley Interscience.

    Google Scholar 

  • Varughese, K. I., Skinner, M. M., Whiteley, J. M., Matthews, D. A., and Xuong, N. H. (1992) Crystal structure of rat liver dihydropteridine reductase. Proc. Natl. Acad. Sci., USA 89, 6080–6084.

    Article  PubMed  CAS  Google Scholar 

  • Varughese, K. I., Xuong, N. H., Kiefer, P. M., Matthews, D. A., and Whiteley, J. M. (1994) Structural and mechanistic characteristics of dihydropteridine reductase: A member of the Tyr-(Xaa)3-Lys-containing family of re-ductases and dehydrogenases. Proc. Natl. Acad. Sci.,USA 91, 5582–5586.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. Y., Leblanc, E., Chang, CF., Papadopoulou, B., Bray, T., Whiteley, J. M., Lin, S. X., and Ouellette, M. (1997) Pterin and folate reduction by the Leishmania tarentolae H locus short-chain dehydrogenase/reduc-tase PTR1. Arch. Biochem. Biophys. 342, 197–202.

    Article  PubMed  CAS  Google Scholar 

  • Whiteley, J. M., Varughese, K. I., Xuong, N. H., Matthews, D. A., and Grimshaw, C. E. (1993) Dihydropteridine reductase. Pteridines 4, 159–173.

    CAS  Google Scholar 

  • Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J. Mol. Biol. 187, 101–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, CF., Bray, T., Varughese, K.I., Whiteley, J.M. (1999). Comparative Properties of Three Pteridine Reductases. In: Weiner, H., Maser, E., Crabb, D.W., Lindahl, R. (eds) Enzymology and Molecular Biology of Carbonyl Metabolism 7. Advances in Experimental Medicine and Biology, vol 463. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4735-8_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4735-8_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7146-5

  • Online ISBN: 978-1-4615-4735-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics