Skip to main content

Nuclear Fission: For Safe, Globally Sustainable, Proliferation-Resistant, and Cost-Effective Energy

  • Chapter
Preparing the Ground for Renewal of Nuclear Power

Abstract

To varying degrees, under varying priorities, and depending strongly on country/region, the advancement of nuclear energy must deal with four cardinal issues: waste, proliferation, cost, and safety. While solutions to these issues are usually offered within a techno-economic framework, the future of nuclear energy is being determined by these issues largely through a socio-cultural paradigm vis รก vis dwindling public acceptance of this technology. After giving a general perspective of energy consumption in terms of minimal requirements, needs, and constraints, the status of and prospects for nuclear energy are reviewed. Key elements of the public acceptance issue are then described, along with pathways being suggested to improve acceptance of this technology. After outlining a range of technical approaches to the future of nuclear energy offering new directions that might improve public acceptance through addressing the four cardinal issues, the long-term and global impacts and trade-offs for nuclear energy as estimated from an energy-economics-environmental model are reported, with an emphasis being placed on how that future may be tied to present concerns over the growing use of fossil fuels and possible climatic impacts related thereto.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Krakowski, Re-Engineering Fission: Reactors for Safe, Globally Sustainable, Proliferation-Resistant, and Cost-Effective Nuclear Power, Los Alamos National Laboratory document LA-UR-98โ€“3768 (August 25, 1998).

    Google Scholarย 

  2. A. K. N. Reddy, R. H. Williams, T. B. Johansson, Energy after Rio: prospects and challenges, United Nations Development Programme Report (1997).

    Google Scholarย 

  3. C. G. Darwin, The Next Million Years, Doubleday and Company, Inc. Garden City, NY (1953).

    Google Scholarย 

  4. R. G. Watts (Ed.), Engineering Response to Global Climate Change: Planning a Research and Development Agenda, Lewis Publishers (1997).

    Google Scholarย 

  5. W. Lutz (Ed.), The Future Population of the World: What Can We Assume Today?, International Institute for Applied Systems Analysis, Earthscan Publications Ltd., London, UK (1996).

    Google Scholarย 

  6. S. Yoda, Nuclear Power in the 21st Century - The Challenge to Overcome the โ€˜Trilemmaโ€™, Proc. Intern. Conf on Future Nuclear Systems, Globalโ€™97, 1, 2 Yokohama, Japan, (October 5โ€“10, 1997).

    Google Scholarย 

  7. International Energy Agency, World Energy Outlook OECD, Paris (1996).

    Google Scholarย 

  8. International Atomic Energy Agency, Energy, electric, and nuclear power estimates for the period up to 2015, Reference Data Series No. 1 (July 1997 Edition), Vienna (July 1997).

    Google Scholarย 

  9. G. H. Steven, Role of Nuclear Power in Sustainable Energy Systems, Proc. Intern. Conf. on Future Nuclear Systems, Globalโ€™97, 1, 118 Yokohama, Japan, (October 5โ€“10, 1997).

    Google Scholarย 

  10. Y. Uchiyama, Life Cycle Analysis Of Power Generation Systems, Central Research Institute of Electric Power Industry Report (CRIEPI, Japan) (1995).

    Google Scholarย 

  11. V. Smil, General Energetics: Energy in the Biosphere and Civilizations, John Wiley and Sons, New York, NY (1991).

    Google Scholarย 

  12. United Nations Organization, Yearbook of World Energy Statistics UNO, New York, NY (1980).

    Google Scholarย 

  13. World Bank, World Development Report, Washington, DC (1988).

    Google Scholarย 

  14. J. Sheffield, World population growth and the role of annual energy use per Capita, Technology Forecasting and Social Change, 59, 55 (1998).

    Articleย  Google Scholarย 

  15. World Energy Council, Energy for Tomorrowโ€™s World - the Realities, the Real Options and the Agenda for Achievement St. Martinโ€™s Press, Kogan Page Ltd., London, (1993).

    Google Scholarย 

  16. D. Meneley (Chm.), Key Issues Paper No. 3: future fuel cycle and reactor strategies, International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, Vienna, Austria (June 3โ€“6, 1997), International Atomic Energy Agency, Vienna (1997).

    Google Scholarย 

  17. H.F. Wagner (Chm.), Key Issues Paper No. 1: global energy outlook, International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, Vienna, Austria (June 3โ€“6, 1997),International Atomic Energy Agency, Vienna (1997).

    Google Scholarย 

  18. J. Lochard (Chm.), Key Issues Paper No. 4: safety, health, and environment implications of the different fuel cycles, International Symposium on Nuclear Fuel Cycle and Reactor Strategies: Adjusting to New Realities, Vienna, Austria (June 3โ€“6, 1997), International Atomic Energy Agency, Vienna (1997).

    Google Scholarย 

  19. Projected costs of generating electricity: update 1997, OECD/NEA-IEA Report (1998).

    Google Scholarย 

  20. N. J. Diaz, Nuclear technology: global accomplishments and opportunities, Nuclear News 36 (May 1998).

    Google Scholarย 

  21. Uranium 1995: Resources, Production, and Demand, Organization of Economic Cooperation a nd Development (OECD) Nuclear Energy Agency (NEA), Paris (1996).

    Google Scholarย 

  22. P. Beck, Prospects and Strategy for Nuclear Power: Global Boon or Dangerous Diversion?, Earthscan Publications, Inc. (1994).

    Google Scholarย 

  23. N. Nakicenovic (Study Director), Global energy perspectives to 2050 and beyond, International Institute for Applied Systems Analysis (IIASA) and World Energy Council (WEC) Report (1995).

    Google Scholarย 

  24. Nuclear power and climate change, Nuclear Energy Agency (NEA)/Organization for Economic Cooperation Development (OECD) Report (April 1998).

    Google Scholarย 

  25. R. Kasperson, Can nuclear power gain public acceptance?, Massachusetts Institute of Technology Report MIT-ANP-CP-002 p. 3โ€“2, Proc. 2nd Intern. Conf. on the Next Generation of Nuclear Power Technology, (October 25โ€“26, 1993).

    Google Scholarย 

  26. Nuclear Energy: Perception Gap, Nuclear Energy Insight, Nuclear Energy Institute p. 8, (March 1998).

    Google Scholarย 

  27. N. E. Todreas, What should our future nuclear energy strategy be?, Massachusetts Institute of Technology report MIT-ANP-CP-002 p. 7โ€“2, Proc. 2nd Intern. Conf. on the Next Generation of Nuclear Power Technology, (October 25โ€“26, 1993).

    Google Scholarย 

  28. N. Takagi, R. Takagi, and H. Sekimoto, Effect of decontamination factor of recycled actinide and FP on the characteristics of SCNES, Prog. in Nuclear Energy 32(3/4), 441 (1998).

    Articleย  Google Scholarย 

  29. F. Venneri, Ning Li, M. Williamson, M. Houts, and G. Lawrence, Disposition of nuclear waste using subcritical accelerator-driven systems: technology choices and implementation scenario, Proc. 6 th Intern. Conf. on Nuclear Engineering (ICONE-6) ASME Publication (May 10โ€“15, 1998).

    Google Scholarย 

  30. M. Steinberg, G. Wotzak, and B. Manowitz, Neutron Burning Of Long-Lived Fission Products For Waste Disposal, Brookhaven National Laboratory Report BNL-8558 (1958)

    Google Scholarย 

  31. G. P. Lawrence, R. A. Jameson, and S. O. Schriber, Accelerator technology for los alamos nuclear-waste transmutation and energy-production concepts, Proc. Intern. on Emerging Nuclear Energy Systems Monterey, CA (June 16โ€“21, 1991)

    Google Scholarย 

  32. W. C. Sailor, C. A. Beard, F. Venneri, and J. W. Davidson, Comparison of accelerator-based with reactor-based nuclear waste transmutation schemes, Prog. in Nuclear Energy 28(4), 359 (1994).

    Articleย  Google Scholarย 

  33. C. D. Bowman, E. D. Arthur, P. W. Lisowski, G. P Lawrence, R. J. Jensen, J. L. Anderson, et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instr. and Meth. A320, 336 (1992).

    Google Scholarย 

  34. J. J. Laidler, J. E. Battles, W. E. Miller, and E. C. Gay, Development of IFR pyroprocessing technology, Proc. Global โ€˜93 International Conf. on Future Nuclear Systems 2, 1061, Seattle, WA (1993)

    Google Scholarย 

  35. M. A. Williamson, Chemistry technology base and fuel cycle of the los alamos accelerator-driven transmutation system, Proc. Global โ€˜97 International Conf. on Future Nuclear Systems 1, 263, Yokohama, Japan (1997).

    Google Scholarย 

  36. A. Galperin, P. Reichert, and A. Radkowsky, Thorium fuel for light water reactors-reducing proliferation potential of nuclear power fuel cycle, Science and Global Security 6, 225 (1997).

    Articleย  Google Scholarย 

  37. E. D. Arthur, P. T. Cunningham, and R. L. Wagner, Jr., An Architecture for Nuclear Energy in the 21st Century Los Alamos National Laboratory report LA-UR-98โ€“1931 (June 29, 1998).

    Google Scholarย 

  38. R. A. Krakowski, J. W. Davidson, C. G. Bathke, E. D. Arthur, and R. L. Wagner Jr., Nuclear Energy and Materials in the 21st Century International Symp. on Nuclear Fuel Cycle and Reactor Strategy: Adjusting to New Realities, Vienna, Austria (June 3โ€“6, 1997) IAEA Publication (1998).

    Google Scholarย 

  39. R. A. Krakowski, J. W. Davidson, C. G. Bathke, E. D. Arthur, and R. L. Wagner Jr., Global economic/energy/environmental (E3) modeling of long-term nuclear futures, Proc. Global โ€˜87 International Conf. on Future Nuclear Systems 2, 885, Yokohama, Japan (October 5โ€“10, 1997).

    Google Scholarย 

  40. R. A. Krakowski and C. G. Bathke, Long-Term Nuclear Energy Strategies Los Alamos National Laboratory document LA-UR-97โ€“3826 (September 24, 1997)].

    Google Scholarย 

  41. R. A. Krakowski, The Role of Nuclear Energy in Mitigating Greenhouse Warming, International Conf. on Environment and Nuclear Energy, Washington DC (October 27โ€“28, 1997), Plenum Press, New York, NY (1998).

    Google Scholarย 

  42. J. Edmonds and J. M. Reilly, Global Energy: Assessing the Future Oxford University Press, New York, NY (1985).

    Google Scholarย 

  43. A. S. Manne and R. G. Richels, Buying Greenhouse Insurance: The Economic Costs of Carbon Dioxide Emission Limits MIT Press, Cambridge, MA (1992).

    Google Scholarย 

  44. R. A. Krakowski, Energy-Economic-Environment (E 3 ) Modeling Activities/Capabilities at Los Alamos National Laboratory Los Alamos National Laboratory document LA-UR-98โ€“945 (March 8, 1998).

    Google Scholarย 

  45. K. Hasselmann, S. Hasselmann, R. Giering, and V. Ocanna, Optimization of CO2 emissions using coupled integral climate response and simplified cost models: a sensitivity study, climate change: integrating science, economics, and policy, N. Nakicenovic, W. D. Nordhaus, R. Richels, and F. L. Toth (Eds.), International Institute for Applied Systems Analysis (IIASA) report CP-96โ€“1 (1995).

    Google Scholarย 

  46. R. A. Krakowski, A Multi-Attribute Utility Approach to Generating Proliferation-Risk Metrics Los Alamos National Laboratory document LA-UR-96โ€“3620 (October 11, 1996).

    Google Scholarย 

  47. W. D. Nordhaus, The cost of slowing climate change: a survey, The Energy Journal 12, 37 (1991).

    Articleย  Google Scholarย 

  48. S. Messner, Endogenized Technological Learning in an Energy Systems Model International Institute for Applied Systems Analysis document RR-97โ€“15 (November 1997).

    Google Scholarย 

  49. R. A. Krakowski, Preliminary Parametric Studies Using the ERB Model in Search of Demand Scenarios for Use by IAEA Consultancy E 3 Study Team Los Alamos National Laboratory document LA-UR-98โ€“2252 (May 18, 1998)

    Google Scholarย 

  50. R. Repetto and D. Austin, The Costs of Climate Protection: A Guide for the Perplexed World Resources Institute report (1997).

    Google Scholarย 

  51. G. Rochlin, Nuclear technology and social culture, Massachusetts Institute of Technology report MITANP-CP-002 p. 7โ€“11, Proc. 2nd Intern. Conf. on the Next Generation of Nuclear Power Technology, (October 25โ€“26, 1993).

    Google Scholarย 

  52. R. C. Longworth, Global Squeeze: The Coming Crisis for First-World Nations, Contemporary Books, Chicago, IL (1998).

    Google Scholarย 

  53. J.F. Ahern (Chm.), Nuclear Power: Technical and Institutional Options for the Future National Research Council, National Academy Press (1992).

    Google Scholarย 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

ยฉ 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krakowski, R.A., Bennett, L., Bertel, E. (1999). Nuclear Fission: For Safe, Globally Sustainable, Proliferation-Resistant, and Cost-Effective Energy. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds) Preparing the Ground for Renewal of Nuclear Power. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4679-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4679-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7118-2

  • Online ISBN: 978-1-4615-4679-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics