Skip to main content

Angiogenesis and Fibrosis During Right Ventricular Hypertrophy in Human Tetralogy of Fallot

  • Chapter

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 3))

Summary

Right ventricular hypertrophy (RVH) due to pressure as well as volume overload caused by (sub) pulmonary stenosis and ventricular septal defect is one of the main features in human tetralogy of Fallot (TF). Currendy, primary correction at a very young age is the treatment of choice. However, it is not yet known to what extent RVH in TF patients regresses after corrective surgery. The aim of our study was to evaluate the changes in magnitude of the myocardial fibrosis and angiogenesis during RVH in patients undergoing corrective surgery. For this purpose, we examined endomyocardial biopsies for the expression of extracellular matrix proteins such as collagens, fibronectin, and an angiogenic growth factor, vascular endothelial growth factor (VEGF), in TF patients with RVH and compared the expression with patients without RVH. Myocardial tissue biopsies were obtained from patients undergoing primary correction (TF-1 group, mean age 0.4 ±0.1 years, n = 8), from those undergoing secondary surgery (TF-2 group, mean age 38.1 ± 3.7 years, n = 6), and from control patients with normal right ventricle (control group, mean age 36.4 ±1.8 years, n = 12). Picro-sirius red staining depicting total collagens and fibronectin staining were semiquantitatively analyzed. Interstitial levels for total collagens were significantly increased in the TF-2 group as compared to the TF-1 group (p < 0.04) and control (p < 0.05) groups. Immunolocalization of fibronectin showed the expression in the interstitium and perivascular areas. Semiquantitative analysis of fibronectin staining revealed that the expression levels were not significandy different in the TF-2 group as compared to the TF-1 and control groups. Angiogenesis, assessed by the increased number of small (p < 0.05) vessels, was observed in both TF groups as compared to the control group. Densitometric analysis of mRNAs encoding VEGF showed significantly enhanced expression in TF-1 (p < 0.02) and TF-2 (p < 0.05) groups as compared to control. Immunoreactive VEGF was localized mainly in the myocytes and smooth muscle cells and not in fibrotic areas in the case of TF groups. Our results show an increased degree of myocardial fibrosis and angiogenesis during RVH in TF patients. This information leaves room for the improvement in contemporary clinical treatment of patients with TF by allowing an assessment of timing for surgery and possibly supports long-term postoperative prognosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jordan SC, Scott O. 1989. Heart Disease in Paediatrics, 3rd ed. Oxford: Butterworth Heinneman.

    Google Scholar 

  2. Bogers AJJC, van der Laarse A, Vliegen HW. 1988. Assessment of hypertrophy in myocardial biopsies taken during correction of congenital heart disease. Thorac Cardiovasc Surgeon 36:137–140.

    Article  CAS  Google Scholar 

  3. Starnes VA, Luciani GB, Latter DA, Griffin ML. 1994. Current surgical management of tetralogy of Fallot. Ann Thorac Surg 58:211–215.

    Article  PubMed  CAS  Google Scholar 

  4. Castaneda AR, Jonas RA, Mayer JE Jr, Hanley FL. 1994. Cardiac Surgery of the Neonate and Infant. Philadelphia: W.B. Saunders Company.

    Google Scholar 

  5. Murphy JG, Gersh BJ, Mair DD, Fuster V, McGoon MD, Ilstrup DM, McGoon DC, Kirklin JW, Danielson GK. 1993. Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N Engl J Med 329:593–599.

    Article  PubMed  CAS  Google Scholar 

  6. Warner KG, Anderson JE, Fulton DR, Payne DD, Geggel RL, Marx GR. 1993. Restoration of the pulmonary valve reduces right ventricular volume overload after previous repair of tetralogy of Fallot. Circulation 88:11189–11197.

    Google Scholar 

  7. Seliem SA, Wu YT, Glenwright K. 1995. Relation between age and surgery and regression of right ventricular hypertrophy in tetralogy of Fallot. Pediatr Cardiol 16:53–55.

    Article  PubMed  CAS  Google Scholar 

  8. van Bilsen M, Chien KR. 1993. Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression. Cardiovasc Res 27:1140–1149.

    Article  PubMed  Google Scholar 

  9. Schwartz K, Carrier L, Mercadier JJ, Lompre AM. 1993. Molecular phenotype of hypertrophied and failing myocardium. Circulation 87:VII-5–VII-10.

    Article  Google Scholar 

  10. Kato M. 1976. Right ventricular hypertrophy in tetralogy of Fallot, a pathohistologic study. Jpn Ass Thorac Surg 24:1436–1445.

    CAS  Google Scholar 

  11. Kawai S, Okada R, Kitamura K, Suzuki A, Saito S. 1984. A morphometrical study of myocardial disarray associated with right ventricular outflow tract obstruction. Jpn Circ J 48:445–456.

    Article  PubMed  CAS  Google Scholar 

  12. Mitsuno M, Nakano S, Shimazaki Y. 1993. Fate of right ventricular hypertrophy in tetralogy of Fallot after corrective surgery. Am J Cardiol 72:694–698.

    Article  PubMed  CAS  Google Scholar 

  13. Tomanek RJ, Torry RJ. 1994. Growth of the coronary vasculature in hypertrophy: mechanisms and model dependence. Cell Mol Biol Res 40:129–136.

    PubMed  CAS  Google Scholar 

  14. Boheler KR, Schwartz K. 1992. Gene expression in cardiac hypertrophy. Trends Cardiovasc Med 2:176–182.

    Article  PubMed  CAS  Google Scholar 

  15. Brand T, Sharma HS, Schaper W. 1993. Expression of nuclear proto-oncogenes in isoproterenol-induced cardiac hypertrophy. J Mol Cell Cardiol 25:1325–1337.

    Article  PubMed  CAS  Google Scholar 

  16. Brand T, Sharma HS, Fleischmann KE, Duncker DJ, McFalls EO, Verdouw PD, Schaper W. 1992. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res 71:1351–1360.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma HS, Wünsch M, Brand T, Schaper W. 1992. Molecular biology of the coronary vascular and myocardial responses to ischemia. J Cardiovasc Pharmacol 20:S23–S31.

    PubMed  CAS  Google Scholar 

  18. Sharma HS, Verdouw PD, Lamers JMJ. 1994. Involvement of sarcoplasmic reticulum calcium pump in myocardial contractile dysfunction: comparison between chronic pressure-overload and stunning. Cardiovasc Drugs Ther 8:461–468.

    Article  PubMed  CAS  Google Scholar 

  19. Sharma HS, van Heugten HAA, Goedbloed MA, Lamers JMJ. 1994. Angiotensin II induced expression of transcription factors precedes increase in Transforming Growth Factor-β1 mRNA in neonatal cardiac fibroblasts. Biochem Biophys Res Commun 205:105–112.

    Article  PubMed  CAS  Google Scholar 

  20. Volders PGA, Willems IEMG, Cleutjens JPM. 1993. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol 25:1317–1323.

    Article  PubMed  CAS  Google Scholar 

  21. Weber KT, Sun Y, Tyagi SC, Cleutjens JP. 1994. Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. J Mol Cell Cardiol 26:279–292.

    Article  PubMed  CAS  Google Scholar 

  22. Bishop JE, Rhodes S, Laurent GJ, Low RB, Stirewalt WS. 1994. Increased collagen synthesis and decreased collagen degradation in right ventricular hypertrophy induced by pressure overload. Cardiovasc Res 28:1581–1585.

    Article  PubMed  CAS  Google Scholar 

  23. Chapman D, Weber KT, Eghbali M. 1990. Regulation of fibrillar collagen types I and III and basement membrane type IV collagen gene expression in pressure overloaded rat myocardium. Circulation Res 67:787–794.

    Article  PubMed  CAS  Google Scholar 

  24. Samuel JL, Barrieux A, Dufour S, Dubus I, Contard F, Koteliansky V, Farhadian F, Marotte F, Thiery JP, Rappaport L. 1991. Accumulation of fetal fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 88:1737–1746.

    Article  PubMed  CAS  Google Scholar 

  25. Boluyt MO, O’Neill L, Meredith AL, Bing OH, Brooks WW, Conrad CH, Crow MT, Lakatta EG. 1994. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75:23–32.

    Article  PubMed  CAS  Google Scholar 

  26. Whittaker P. 1997. Collagen and ventricular remodeling after acute myocardial infarction: concepts and hypotheses. Basic Res Cardiol 92:79–81.

    PubMed  CAS  Google Scholar 

  27. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. 1989. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64:1041–1050.

    Article  PubMed  CAS  Google Scholar 

  28. McLenachan JM, Dargie HJ. 1990. Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens 3:735–740.

    PubMed  CAS  Google Scholar 

  29. Farhadian F, Contard F, Corbier A, Barrieux A, Rappaport L, Samuel JL. 1995. Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol 27:981–990.

    Article  PubMed  CAS  Google Scholar 

  30. Villarreal FJ, Dillmann WH. 1992. Cardiac hypertrophy-induced changes in mRNA levels for TGF-β1, fibronectin and collagen. Am J Physiol 262:H1861–H1866.

    PubMed  CAS  Google Scholar 

  31. Sharma HS, Prefers E, Yilmaz E, Hokken R, Bogers AJJC. 1997. Right ventricular hypertrophy in human tetralogy of Fallot is associated with increased myocardial fibrosis and vascularization. Circulation 96(8):I.17–I.18.

    Google Scholar 

  32. Bogers AJJC, Roofthooft M, Pisters H, Spitaels SEC, Bos E. 1994. Longterm follow-up of gamma irradiated transannular homograft patch in surgical treatment of tetralogy of Fallot. Thorac Cardiovasc Surgeon 42:337–339.

    Article  CAS  Google Scholar 

  33. Hokken RB, Bogers AJJC, Spitaels SEC, Hess J, Bos E. 1995. Pulmonary homograft insertion after repair of pulmonary stenosis. J Heart Valve 4:182–186.

    CAS  Google Scholar 

  34. Schoof PH, Cromme-Dijkhuis AH, Bogers AJJC, Thyssen EJM, Witsenburg M, Hess J, Bos E. 1994. Aortic root replacement with pulmonary autograft in children. J Thorac Cardiovasc Surg 107:367–373.

    PubMed  CAS  Google Scholar 

  35. Hokken RB, Bogers AJJC, Taams MA, Willems TP, Cromme-Dijkhuis AH, Witsenburg M, Spitaels SEC, van Herwerden LA, Bos E. 1995. Aortic root replacement with a pulmonary autograft. Eur J Cardiothorac Surg 9:378–383.

    Article  PubMed  CAS  Google Scholar 

  36. Sharma HS, Tang ZH, Gho BC, Verdouw PD. 1995. Nucleotide sequence and expression of the porcine vascular endothelial growth factor. Biochim Biophys Acta 1260:235–238.

    Article  PubMed  Google Scholar 

  37. Peters THF, Sharma HS, Yilmaz E, Bogers AJJC. 1999. Quantitative analysis of collagens and fibronectin expression in human right ventricular hypertrophy. Ann N Y Acad Sci 874:278–285.

    Article  PubMed  CAS  Google Scholar 

  38. Shehata SMK, Mooi WJ, Okazaki T, El-Banna I, Sharma HS, Tibboel D. 1999. Enhanced expression of vascular endothelial growth factor in lungs of newborns with congenital diaphragmatic hernia and pulmonary hypertension. Thorax 54(5):427–431.

    Article  PubMed  CAS  Google Scholar 

  39. Sharma HS, Hokken RB, Bosman FT, Bogers AJJC. 1995. Myocardial expression and immunohistochemical localisation of vascular endothelial growth factor in human tetralogy of Fallot. Eur Heart J 16:353.

    Google Scholar 

  40. Ferrara N, Houck KA, Jakeman LB. 1991. The vascular endothelial growth factor family of polypeptides. J Cell Biochem 47:211–218.

    Article  PubMed  CAS  Google Scholar 

  41. Giaid A, Michel RP, Stewart DJ, Sheppard M, Corrin B, Hamid Q. 1993. Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet 341:1550–1554.

    Article  PubMed  CAS  Google Scholar 

  42. Schwartz SM, Gordon D, Mosca RS, Bove EL, Heidelberger KP, Kulik TJ. 1996. Collagen content in normal, pressure, and pressure-volume overloaded developing human hearts. Am J Cardiol 77:734–738.

    Article  PubMed  CAS  Google Scholar 

  43. Vikstrom KL, Bohlmeyer T, Factor SM, Leinwand LA. 1998. Hypertrophy, pathology, and molecular marken of cardiac pathogenesis. Circ Res 82:773–778.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, H.S., Peters, E.T.H.F., Bogers, A.J.J.C. (2000). Angiogenesis and Fibrosis During Right Ventricular Hypertrophy in Human Tetralogy of Fallot. In: Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Hypertrophied Heart. Progress in Experimental Cardiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4423-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4423-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6991-2

  • Online ISBN: 978-1-4615-4423-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics