Skip to main content

Rice Genome Research: An Alternative Approach Based on Molecular Cytology

  • Chapter
Genomes

Part of the book series: Stadler Genetics Symposia Series ((SGSS))

Abstract

A genome is a collection of chromosomes and visible chromosomes under a photomicroscope that provide a unique and effective approach to genome analysis. In situ hybridization (ISH) is one of the most effective methods to analyze the essential characteristics of genomes, because the method is based on the structural constituent of genomes that is sometimes overlooked by biochemical means. The method requires that the structure of DNA fibers, chromosomes and nuclei is maintained as much as possible in order to utilize the morphological components as the key information for specifying and/or interpreting the location and biological significance of the signals detected. It could also be pointed out that the information from single chromosomal spreads sometimes gives satisfactory and essential information on the localization of certain nucleotide sequences on the target chromosomes and their biological significance. Therefore, genome analysis by ISH provides unique information different from the ordinary biochemical means which handle the mass of DNA fragments as the target in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aggarwal, R.K., Brar, D.S., and Khush, G.S., 1997, Two new genomes in the Oryza complex identified on the basis of molecular divergence analysis using total genomic DNA hybridization, Mol. Gen. Genet. 254:1.

    Article  PubMed  CAS  Google Scholar 

  • Arumaganathan, K., and Earle, E.D., 1991, Nuclear DNA content of some important plant species, Plant Mol. Biol. Rep. 9:208.

    Article  Google Scholar 

  • Bennett, M.D., and Leitch, I.J., 1995, Nuclear DNA amounts in angiosperms, Ann. Bot. 76:113.

    Article  CAS  Google Scholar 

  • Causse, M.A., Fulton, T.M., Cho, Y.G., Ahn, S.N., Chunwongse, J., Wu, K., Xiao, J., Yu, Z., Ronald, P.C., Harrington, S.E., Second, G., McCouch, S.R., and Tanksley, S.D., 1994, Saturated molecular map of the rice genome based on an interspecific backcross population, Genetics 138:1251.

    PubMed  CAS  Google Scholar 

  • Chen, J.H., Song, Y.C., and Liu, L.H., 1994, Studies on G-banded karyotype among fourOryza species, in: Plant Chromosome Research 1992, R. Tanaka, ed., pp. 133, International Academic Publishers, Beijing.

    Google Scholar 

  • Dally, A.M., and Second, G., 1990, Chloroplast DNA diversity in wild and cultivated species of rice (Genus Oryza, section Oryza). Cladistic mutation and genetic-distance analysis, Theor. Appl. Genet. 80:209.

    Article  CAS  Google Scholar 

  • De Kochko, A., Kiefer, M.C., Cordesse, F., Reddy, A.S., and Delseny, M, 1991, Distribution organization of a tandemly repeated 352-bp sequence in theOryza family, Theor. Appl. Genet. 82:57.

    Article  Google Scholar 

  • Deshpande, V.G., and Ranjekar, P.K., 1980, Repetitive DNA in three Gramineae species with low DNA content, in: Physiological Chemistry 361, Z. Hoppe-Seyler ed., pp.1223, Walter de Gruyter & Co., Berlin.

    Google Scholar 

  • Fransz, P.F., Alonso-Blanco, C., Liharska, T.B., Peeters, A.J.M., Zabel, P., and de Jong, J.H., 1996, High resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridisation to extended DNA fibres, Plant J. 9:421.

    Article  PubMed  CAS  Google Scholar 

  • Fukui, K., 1986a, Standardization of karyotyping plant chromosomes by a newly developed chromosome image analyzing system (CHIAS), Theor. Appl. Genet. 72:27.

    Article  Google Scholar 

  • Fukui, K., 1986b, Comparison between Giemsa and orcein staining methods in rice chromosomes, La Kromosomo 11-43-44:1398.

    Google Scholar 

  • Fukui, K., 1988, analysis and utility of chromosome information by using the chromosome image analyzing system, CHIAS, Bull. Natl. Inst. Agrobiol. Resour. 4:154.

    Google Scholar 

  • Fukui, K., 1990, Localization of rRNA genes on rice chromosomes, Rice Biotech. Quart. 1:18.

    Google Scholar 

  • Fukui, K., 1996a, Plant chromosomes at mitosis, in: Plant Chromosomes: Laboratory Methods, K. Fukui and S. Nakayama eds., pp.1, CRC Press, Boca Raton.

    Google Scholar 

  • Fukui, K., 1996b, Recent advances in rice chromosome research, in: Rice Genetics 111, Proceedings of the 3rd International Rice Genetics Symposium, G. S. Khush ed., pp. 117, International Rice Research Institute, Los Banos, Philippines.

    Google Scholar 

  • Fukui, K., and Iijima, K., 1991, Somatic chromosome map of rice by imaging methods. Theor. Appl. Genet. 81:589.

    Article  Google Scholar 

  • Fukui, K., and Iijima, K., 1992, Manual on rice chromosomes, (2nd ed.) Misc. Pub. Natl. Inst. Agrobiol. Resour. 4:1.

    Google Scholar 

  • Fukui, K. and Ohmido, N., 2000, Smallness: gain and loss in chromosome research, in: Chromosome Today 13, P. Redi and E. Olmo eds., Birkhäuser Verlag AG, Basel (in press).

    Google Scholar 

  • Fukui, K., Kakeda, K., Hashimoto, J., and Matsuoka, S. 1987, In situ hybridization of 125I-labeled rRNA to rice chromosomes, Rice Genet. Newsl. 4:114.

    Google Scholar 

  • Fukui, K., Minezawa, M., Kamisugi, Y., Ishikawa, M., Ohmido, M., Yanagisawa, T., Fujishita M., Sakai, F., 1992, Microdissection of plant chromosomes by argon-ion laser beam, Theor. Appl. Genet. 84:787.

    Article  Google Scholar 

  • Fukui, K., Nakayama, S., Ohmido, N., Yoshiaki, H.2 and Yamabe, M., 1998, Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45s rDNA loci on the identified chromosomes, Theor. Appl. Genet. 96:325.

    Article  CAS  Google Scholar 

  • Fukui, K., Ohmido, N., and Khush, G. S., 1994, Variability in rDNA loci in genus Oryza detected through fluorescence in situ hybridization, Theor. Appl. Genet. 87:893.

    Article  CAS  Google Scholar 

  • Fukui, K., Shishido, R., and Kinoshita, T., 1997, Identification of the rice D-genome chromosomes by genomic in situ hybridization, Theor. Appl. Genet. 95:1239.

    Article  CAS  Google Scholar 

  • Gustafson, J.P., and Dillé, J.E., 1992, Chromosome location of Oryza sativa recombination linkage groups, Proc. Natl. Acad. Sci. USA 89:8646.

    Article  PubMed  CAS  Google Scholar 

  • Ha, S., Moore, P.H., Heinz, D., Kato, S., Ohmido, N. and Fukui, K. 1999, Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and immaging methods, Plant Mol. Biol. 39:1165.

    Article  PubMed  CAS  Google Scholar 

  • Hu, C.H., 1964, Further studies on the chromosome morphology of Oryza sativa L., in: Rice Genetics and Cytogenettcs, pp. 51, Elsevier Publishing Co., Amsterdam.

    Google Scholar 

  • Iijima, K., Kakeda, K., and Fukui, K. 1991, Identification and characterization of somatic rice chromosomes by imaging methods, Theor. Appl. Genet. 81:597.

    Article  Google Scholar 

  • Islam-Faridi, M.N., Ishii, T., Kumar, V., Sitch, L.A., and Brar, D.S., 1990, Chromosomal location of ribosomal RNA genes in rice by in situ hybridization, Rice Genet Newsl. 7:143.

    Google Scholar 

  • Jiang, J., Gill, B.S., Wang, G.L., Ronald, P.C., Ward, D.C., 1995, Metaphase and interphase fluorescence in situ hybridisation mapping of rice genome with bacterial artificial chromosomes, Proc. Natl. Acad. Sci. USA 92:4487.

    Article  PubMed  CAS  Google Scholar 

  • Kamisugi, Y., Furuya, N., Iijima, K., and Fukui, K., 1993, Computer-aided automatic identification of rice chromosomes by image parameters, Chromosome Res. 1:189.

    Article  PubMed  CAS  Google Scholar 

  • Kamisugi, Y., Nakayama, S., O’Neill, CM., Mathias, R.J., Trick, M., and Fukui, K., 1998, Visualization of the Brassica self-incompatibility S-locus on identified oilseed rape chromosomes, Plant Mol. Biol. 38:29.

    Article  Google Scholar 

  • Kamisugi, Y., Sakai, F., Minezawa, M., Fujishita, M., and Fukui, K., 1993, Recovery of dissected C-band regions in Crepis chromosomes, Theor. Appl. Genet. 85:825.

    Article  Google Scholar 

  • Kato, S., and Fukui, K., 1998, Condensation pattern (CP) analysis of plant chromosomes by an improved chromosome image analyzing system, CHIAS III, Chromosome Res. 6:473.

    Article  PubMed  CAS  Google Scholar 

  • Kato, S., Hirose, T., Akiyama, Y., O’Neill, CM., and Fukui, K., 1997, Manual on the chromosome image analyzing system HI, CHIAS III, Res. Rep. Agr. Devel. Hokuriku Area 36:1.

    Google Scholar 

  • Khush, G.S., and Kinoshita, T., 1991, Rice karyotype, marker genes and linkage groups, in: Rice Biotechnology, G.S. Khush and G.H. Toennieson, eds., pp. 83, CAB International, Oxford.

    Google Scholar 

  • Kurata, N., and Omura, T., 1978, Karyotype analysis in rice. A new method for identifying all chromosome pairs, Jpn. J. Genet. 53:251.

    Article  Google Scholar 

  • Kurata, N., Nagamura, Y., Yamamoto, K., Harushima, Y., Sue, N., Wu, J., Antonio, B.A., Shomura, A., Shimizu, T., Lin, S.Y., Inoue, T., Fukuda, A., Shimano, T., Kuboki, Y., Toyama, T., Miyamoto, Y., Kirihara, T., Hayasaka, K., Miyao, A., Monna, L., Zhong, H.S., Tamura, Y., Wang, Z.X., Momma, T., Umehara, Y., Yano, M., Sasaki, T., and Minobe, Y., 1994, A 300 kilobase interval genetic map of rice including 883 expressed sequences, Nature Genet. 8:365.

    Article  PubMed  CAS  Google Scholar 

  • Kuwada, Y., 1910, A cytological study of Oryza sativa L., Bot. Mag. Tokyo 26:267.

    Google Scholar 

  • Lawrence, J.B., Singer, R.H., and McNeil, J.A., 1990, Interphase and metaphase resolution of different distance within the human dystrophin gene, Science 249:928.

    Article  PubMed  CAS  Google Scholar 

  • Li, H.W., Weng, T.S., Chen, C.C., and Wang, W.H., 1961, Cytogenetical studies of Oryza sativa L. and its related species. 1. Hybrids O. paraguaiensis Wedd. x O. brachyantha Chev. et Roehr., O. paraguaiensis Wedd. x O. australiensis Domin. and O. australiensis Domin. x O. aha Swallen, Bot. Bull. Acad. Sinica 2:79.

    Google Scholar 

  • Martinez, C.P., Arumaganathan, K., Kikuchi, H., and Earle, E.D., 1994, Nuclear DNA content often rice species as determined by flow cytometry, Jpn. J. Genet. 69:513.

    Article  CAS  Google Scholar 

  • Morinaga, T., 1939, Cyto-genetics on rice (Oryza sativa L.), Bot. Zool. 7:179.

    Google Scholar 

  • Nakamura, S., Asakawa, S., Ohmido, N., Fukui, K., Shimizu, N., and Kawasaki, S., 1997, Construction of an 800-kb contig in the near-centromeric region of the rice blast resistance gene Pi-ta 2 using a highly repetitive rice BAC library, Mol. Gen. Genet. 254:611.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M., and Fukui, K., 1997, A chromosome-oriented approach to genome analysis in a woody plant-Sequoiadendron giganteum (Lindl.) Buchholz, in: Cytogenetic Studies of Forest Trees and Shrub Species, Z. Borzan and S. E. Schlarbaum, eds, pp.89, University of Zagreb, Zagreb, Croatia.

    Google Scholar 

  • Ohmido, N., Akiyama, Y., and Fukui, K., 1998, Physical mapping of unique nucleotide sequences on identified rice chromosomes, Plant Mol. Biol. 38:1043.

    Article  PubMed  CAS  Google Scholar 

  • Ohmido, N., and Fukui, K., 1997, Visual verification of close disposition of rice A genome specific tandem repeat sequence (TrsA) and telomere sequence, Plant Mol. Biol. 35:963.

    Article  PubMed  CAS  Google Scholar 

  • Ohmido, N., Kijima, K., Akiyama, Y., de Jong, J.H. and Fukui, K. Quantification of total genomic DNA and repetitive sequences in rice reveals concurrent changes of different DNA families in indica and japonica rice, Mol. Gen. Genet, (in press).

    Google Scholar 

  • Ohmido, N., Kijima, K., Ashikawa, I., de Jong, H.J. and Fukui, K. Visualization of the terminal structure of rice chromosomes using multicolor FISH on chromosomes and extended DNA fibers. Theor. Appl. Genet, (submitted).

    Google Scholar 

  • Ohtsubo, H., Umeda, M., and Ohtsubo, E., 1991, Organization of DNA sequences highly repeated in tandem in rice genomes, Jpn. J. Genet. 66:241.

    Article  PubMed  CAS  Google Scholar 

  • Schriml, L.M., Padilla-Nash, H.M., Colemn, A., Moen, P., Nash, W.G., Menninger, J., Jones, G., Ried, T. and Dean M. 1999, Tyramide signal amplification (TSA)-FISH applied to mapping PCR-labeled probes less than lkb in size, Biotechniques 27:608.

    PubMed  CAS  Google Scholar 

  • Schrock, E., du Manior, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M.A., Ning, Y., Ledbetter, D.H., Bar-Am, I., Soenksen, D., Garini, Y., and Ried, T., 1996, Multicolor spectral karyotyping of human chromosomes, Science 273:494.

    Article  PubMed  CAS  Google Scholar 

  • Shishido, R., Apistwanich, S., Ohmido, N., Okinaka, Y., Mori, K., and Fukui, K., 1998, Detection of specific chromosome reduction in nce somatic hybrids with A, B, and C genomes by multicolor genomic in situ hybridization. Theor. Appl. Genet, (in press).

    Google Scholar 

  • Singh, K., Ishii, T., Parco, A., Huang, N., Brar, D.S., and Khush, G.S., 1996, Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.), Proc. Nati Acad. Sci USA 93:6163.

    Article  CAS  Google Scholar 

  • Song, Y.C., and Gustafson, J.P, 1995, The physical location of fourteen RFLP markers in nce. (Oryza sativa L.), Theor. Appl. Genet. 90:113.

    CAS  Google Scholar 

  • Speicher, M.R., Ballard, S.G., and Ward, D.C., 1996, Karyotyping human chromosomes by combinatorial multi-fluor FISH, Nature Genet. 12:368.

    Article  PubMed  CAS  Google Scholar 

  • Stebbins, G.L., 1950, Variation and Evolution in Plants, pp. 300, Columbia University Press, New York.

    Google Scholar 

  • Swanson, C.P., 1957, Polyploidy and evolution, in: Cytology and Cytogenetics, pp. 500, Prentice-Hall, Inc., Englewood Cliffs.

    Google Scholar 

  • Uozu, S., Ohmido, N., Ohtsubo, H., Ohtsubo, E., and Fukui, K., 1997, Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza, Plant Mol. Biol. 35:791.

    Article  CAS  Google Scholar 

  • Van den Engh, G., Sachs, R., and Trask, B.J. 1992, Estimating genomic distance from DNA sequence location in cell nuclei by a random walk model, Science 257:1410.

    Article  PubMed  Google Scholar 

  • Wiegant, J., Kalle, W., Mullenders, L., Brookes, S., Hoovers, J.M.N., Dauwerse, J.G., van Ommen, G.J.B., Raap, A.K., 1992, High-resolution in situ hybridization using DNA halo preparations. Hum. Mol. Genet. 1.587.

    Google Scholar 

  • Wu, H.K., Chung, M.C., Wu, T., Nmg, C.N., and Wu, R., 1991, Localization of specific repetitive DNA sequences in individual rice chromosomes, Chromosoma 100:330.

    Article  PubMed  CAS  Google Scholar 

  • Wu, K.S., and Tanksley, S.D., 1993, Genetic and physical mapping of telqmeres and macrosatellites of rice. Plant Mol. Biol. 22:861.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T., Wang, Y., and Wu, R. 1994, Transcribed repetitive DNA sequence in telomeric regions of rice (Oryza sativa). Plant Mol. Biol. 26:363.

    Article  PubMed  CAS  Google Scholar 

  • Wu, T., and Wu, R.A., 1987, A new rice repetitive DNA shows sequence homology to both 5S RNA and tRNA, Nucl. Acids Res. 15 5913.

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa, T., Tano, S., Fukui, K., and Harada, H., 1991, Marker chromosomes commonly observed in the genus Glycine, Theor. Appl. Genet. 81:606.

    Google Scholar 

  • Zwick, M.S., Hanson, R.E., McKmght, T.D., Islam-Fandi, M.N., Stelly, D.M., Wing, R.A., and Price, H.L., 1997, A rapid procedure for the isolation of Cot-1 DNA for plants, Genome 40:138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fukui, K., Ohmido, N. (2000). Rice Genome Research: An Alternative Approach Based on Molecular Cytology. In: Gustafson, J.P. (eds) Genomes. Stadler Genetics Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4235-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4235-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6902-8

  • Online ISBN: 978-1-4615-4235-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics