Skip to main content

Principles and Horizons of Magnetic Resonance Imaging

  • Chapter
Advances in Electromagnetic Fields in Living Systems

Part of the book series: Advances in Electromagnetic Fields in Living Systems ((AEFL,volume 3))

Abstract

Magnetic resonance imaging (MRI) is a way of making tomographic images of the body non-invasively. Protons in the body can act like tiny bar magnets, with a north pole and a south pole. When an external magnetic field is applied across a part of the body, each little magnet lines up with the external magnetic field. If a radiofrequency (rf) wave is then transmitted into the tissues, some of the magnets are induced by the energy from the rf wave. The if wave is then turned off, and subsequently the magnets rebroadcast a signal of the same frequency as the original rf wave. A rf coil picks up the signal from the atomic magnets, and a computer can process the signal and reconstruct an image from the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bandettini, P.A., E.C. Wong, R.S. Hinks, RS. Tikofsky, and J.S. Hyde,1992, Time course EPI of human brain function during task activation. Magn. Reson. Med. 25: 390.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, F., W.W. Hansen, and M. Packard, 1946, The nuclear induction experiment. Phys. Rev. 70: 474.

    Article  CAS  Google Scholar 

  • Bomsdorf, H., T. Helzel, D. Kunz, P. Roeschmann, O. Tschendel, and J. Wieland, 1988, Spectroscopy and imaging with a 4 Tesla whole-body MR system. NMR Biomed. 1: 151.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, R.R., B. Siewert, D.G. Darby, V. Thangaraj, A.C. Nobre, M.M. Mesulam, and S. Warach, 1994, Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radiofrequency. Radiology 192: 513.

    PubMed  CAS  Google Scholar 

  • Edelstein, W.A., J.M.S. Hutchison, G. Johnson, and T. Redpath, 1980, Spin warp NMR imaging and applications to whole body imaging. Phys. Med Biol. 25: 751.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, R.R. and W.A. Anderson, 1966, Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instrum. 37: 93.

    Article  CAS  Google Scholar 

  • Frahm, J., H. Bruhn, K.D. Merboldt, and W. Haenicke, 1992, Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J. Magn. Reson. Imag. 2: 501.

    Article  CAS  Google Scholar 

  • Gadian, D.G. and F.N.H. Robinson, 1979, Radiofrequency losses in NMR experiments on electrically conducting samples. J Magn. Reson. 34: 449.

    CAS  Google Scholar 

  • Hahn, E.L., 1950, Spin echoes. Phys. Rev. 80: 580.

    Article  Google Scholar 

  • Homak, J.P., J. Szumowski, and R.G. Bryant, 1988, Magnetic field mapping. Magn. Reson. Med. 6: 158.

    Article  Google Scholar 

  • Insko, E.K. and L. Bolinger, 1993, Mapping of the radiofrequency field. J. Magn. Reson. A 103: 82.

    Article  CAS  Google Scholar 

  • Kohno, K., M. Hoehn-Berlage, G. Mies, T. Back, and K.A. Hossmann, 1995, Relationship between diffusion-weighted MR images, cerebral blood flow, and energy state in experimental brain infarction. Magn. Reson. Imag. 13: 73.

    Article  CAS  Google Scholar 

  • Lauterbur, P.C., 1973, Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190.

    Article  CAS  Google Scholar 

  • LeBihan, D. and R Turner, 1992, Diffusion and perfusion. in: Magnetic Resonance Imaging Mosby Year Books, St. Louis

    Google Scholar 

  • LeBihan, D., R. Turner, T.A. Zeffiro, C.A. Cuenod, P. Jezzard, and V. Bonnerot, 1993, Activation of human primary visual cortex during visual recall: an MRI study. Proc. Natl. Acad Sci. USA. 90: 1802.

    Article  Google Scholar 

  • Ljunggren, S., 1983, A simple graphical representation of Fourier-based imaging method. J. Magn. Reson. 54: 338.

    Google Scholar 

  • McCauthy, G., A.M. Blamire, D.L. Rothman, R. Gruetter, and R.G. Schulman, 1993, Echo-planar MRI studies of frontal cortex activation during word generation in humans. Proc. Natl. Acad Sci. USA. 90: 4952.

    Article  Google Scholar 

  • Metheall, P., D.C. Barger, R.H. Smallwood, and B.H. Brown, 1996, Three-dimensional electrical impedance tomography. Nature 380: 509.

    Article  Google Scholar 

  • Mintrovich, J., M.E. Mosley, L. Chileuitt, H. Shimizu, Y. Cohen, and P.R. Weinstein, 1991, Comparison of diffusion-and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magn. Reson. Med. 18: 39.

    Article  Google Scholar 

  • Mosley, M.E., Y. Cohen, J. Mintorovich, L. Chileuitt, H. Shimizu, J. Kucharczyk, F.M. Wendland, and P.R. Weinstein, 1990, Early detection of regional cerebral ischemia in cats: comparison of diffusion and T2-MRI and spectroscopy. Magn. Reson. Med. 14: 330.

    Article  Google Scholar 

  • Ogawa, S. and T-M. Lee, 1990, Magnetic resonance imaging of blood vessels at high field: in vivo and in vitro measurements and image simulation. Magn. Reson. Med. 16: 9.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa, S., T-M. Lee, A.S. Nayak, and P. Glynn, 1990, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic field. Magn. Reson. Med. 14: 68.

    Article  PubMed  CAS  Google Scholar 

  • Ong, K.C., H. Wen, A.S. Chesnick, S. Duewell, F.A. Jaffer, and R.S. Balaban, 1995, Radiofrequency shielding of surface coils at 4.0 T. J. Magn. Reson. Imag. 5: 773.

    Article  CAS  Google Scholar 

  • Pennock, J.M., F.W. Cowan, J.E. Schweiso, A. Oatridge, M.A. Rutherfard, L.M.S. Pubowitz, and G.M. Bydder, 1994, Clinical role of diffusion-weighted imaging: neonatal studies. MAGMA 2: 273.

    Article  Google Scholar 

  • Purcell, E.M., H.C. Torroy, and R.V. Pound, 1946, Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69: 37.

    Article  CAS  Google Scholar 

  • Rueckert, L., I. Appollonio, J. Grafmaii, P. Jezzard, R Johnson, Jr., D. LeBihan, and R. Turner, 1994, MRI functional activation of the left frontal cortex during covert word production. J. Neuroimaging 4: 67.

    PubMed  CAS  Google Scholar 

  • Stejskal, E.O. and J.E. Tanner, 1965, Spin diffusion measurements: spin-echoes in the presence of time-dependent field gradient. J Chem. Phys. 42: 288.

    Article  CAS  Google Scholar 

  • Stejskal, E.O., 1965, Use of spin echo in pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43: 3597.

    Article  Google Scholar 

  • Stollberger, R and P. Wach, 1996, Imaging of the active B1 Field in vivo. Magn. Reson. Med. 35: 246.

    Article  CAS  Google Scholar 

  • Turner, R., 1993, Gradient coil design: a review of method. Magn. Reson. Imag. 11: 903.

    Article  CAS  Google Scholar 

  • Turner, R, 1991, D. LeBihan, C.T.W. Moonen, D. Despres, and J. Frank, Echo-planar time course MRI of cat brain by oxygenation changes. Magn. Reson. Med. 22: 159.

    Article  PubMed  CAS  Google Scholar 

  • Ueno, S. and N. Iriguchi, 1998, Impedance magnetic resonance imaging: a method for imaging of impedance distribution based on magnetic resonance imaging. J. Appl. Phys. 83: 6450.

    Article  CAS  Google Scholar 

  • Verheul, H.B., R. Balazs, J.W. Berkelbach van der Sprenkel, C.A.F. Tulleken, K. Nicolay, K.S. Tamminga, and M. van Lookeren Campagne, 1994, Comparison of diffusion weighted MRI with changes in cell volume in a rat model of brain injury. NMR Biomed 7: 96.

    Article  PubMed  CAS  Google Scholar 

  • Warach, S., D. Chien, W. Li, M. Ronthal, and RR. Edelman, 1992, Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 42: 1717.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D S, J A Detre, J.S. Leigh, and A.P. Koretsky, 1992, Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl. Acad Sci. USA. 89: 212.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., D.S. Williams, and A.P. Koretsky, 1993, Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn. Reson. Med. 29: 416.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ueno, S., Iriguchi, N. (2000). Principles and Horizons of Magnetic Resonance Imaging. In: Lin, J.C. (eds) Advances in Electromagnetic Fields in Living Systems. Advances in Electromagnetic Fields in Living Systems, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4203-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4203-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6886-1

  • Online ISBN: 978-1-4615-4203-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics