Skip to main content

Designer Tannins: Using Genetic Engineering to Modify Levels and Structures of Condensed Tannins in Lotus corniculatus

  • Chapter
Plant Polyphenols 2

Part of the book series: Basic Life Sciences ((BLSC,volume 66))

Abstract

In terms of the genetic improvement of forage legumes, a number of targets have been identified.1 However, it is interesting to note that when one discusses the modification of chemical composition of these species, condensed tannins have been identified as being of critical importance by a number of independent research groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McKersie, B.D.; Brown, D.C.W. Biotechnology and the improvement of forage legumes. CAB International, Oxford (1997).

    Google Scholar 

  2. Barry T.N.; Duncan S.J. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 1._Voluntary intake. Br. J. Nut. 51:485 (1984).

    Article  CAS  Google Scholar 

  3. Lees, G.L. Condensed tannins in some forage legumes: their role in the prevention of ruminant pasture bloat. In: Hemingway, R.W.; Laks, P.E. (eds.). Plant polyphenols—synthesis, properties, significance. Plenum Press, New York p. 915 (1992).

    Google Scholar 

  4. Reid C.S.W. Bloat in New Zealand cattle. Bovine Practitioner 1:24 (1976).

    Google Scholar 

  5. Hardy, T. Far from the madding crowd. McMillan, London (1874).

    Google Scholar 

  6. Tanner G.J.; Moate P.J.; Davis L.H.; Laby R.H.; Yuguang L.; Larkin P.A. Proanthocyanidins (condensed tannin) destabilise plant protein foams in a dose dependent manner. Aust. J. Agric. Res. 46:1101 (1995).

    Article  CAS  Google Scholar 

  7. Reed J.D. Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 34:82 (1994).

    Google Scholar 

  8. Carter, E.B.; Theodorou, M.K.; Morris, P. Responses of Lotus corniculatus to environmental change. 2._Effect of elevated CO2, temperature and drought on tissue digestion in relation to tannin and carbohydrate accumulation. J. Sci. Food Agric. (in press).

    Google Scholar 

  9. Robbins, M.P.; Carron, T.R.; Morris, P. Transgenic Lotus corniculatus: a model system for modification and genetic manipulation of condensed tannin biosynthesis. In: Hemingway, R.W.; Laks, tP.E. (eds.). Plant polyphenols—synthesis, properties, significance. Plenum Press, New York, p. 111 (1992).

    Google Scholar 

  10. Webb K.J.; Jones S.; Robbins M.P.; Minchin F.R. Characterisation of transgenic root cultures of Trifolium repens, Trifolium pratense and Lotus corniculatus and transgenic plants of Lotus corniculatus. Plant Sci. 70:243 (1990).

    Article  Google Scholar 

  11. Lacombe E.; Hawkins S.; Van Doorsselaere, J.; Piquemal J.; Goffner D.; Poeydomenge O.; Boudet A.M.; Grima-Pettenati J. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J. 11:429 (1997).

    Article  PubMed  CAS  Google Scholar 

  12. Joseph R.; Tanner G.; Larkin P. Proanthocyanidin synthesis in the forage legume Onobrychis viciifolia. A study of chalcone synthase, dihydroflavonol 4-reductase and leucoanthocyanidin 4-reductase in developing leaves, Aust. J. Plant Physiol. 25:271 (1998).

    Article  CAS  Google Scholar 

  13. Meldgaard M. Expression of chalcone synthase, dihydroflavonol reductase and flavanone 3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor. Appl. Genet. 83:695 (1992).

    Article  CAS  Google Scholar 

  14. Bavage A.D.; Robbins M.P. Dihydroflavonol reductase, a Lotus corniculatus L. tannin biosynthesis gene: isolation of a partial gene clone by PCR. Lotus Newsletter 25:37 (1994).

    Google Scholar 

  15. Moyano E.; Portero-Robles I.; Medina-Escobar N.; Valpuesta V.; Munoz-Blanco J.; Caballero J.L. A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process. Plant Physiol. 117:711 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. Colliver S.P.; Morris P.; Robbins M.P. Differential modification of flavonoid and isoflavonoid biosynthesis with an antisense chalcone synthase construct in transgenic Lotus corniculatus. Plant Mol. Biol. 35:509 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Beffa, R.S.; Neuhaus J.-M.; Meins F. Physiological compensation in antisense transformants: Specific induction of an “ersatz” glucan endo-1,3-glucosidase in plants infected with necrotizing viruses. Proc. Natl. Acad. Sci. USA 90:8792 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. Todd J.J.; Vodkin L.O. Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8:687 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. Carron T.R.; Robbins M.P.; Morris P. Genetic modification of condensed tannin biosynthesis in Lotus corniculatus. I. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in “hairy root” cultures. Theor. Appl. Genet. 87:1006 (1994).

    Article  CAS  Google Scholar 

  20. Robbins M.P.; Bavage A.D.; Strudwicke C.; Morris P. Genetic manipulation of condensed tannins in higher plants. II. Analysis of birdsfoot trefoil plants harbouring antisense dihydroflavonol reductase constructs. Plant Physiol. 116:1133 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. Bavage A.D.; Davies I.G.; Robbins M.P.; Morris P. Expression of an Antirrhinum dihydroflavonol reductase gene results in changes in condensed tannin structure and accumulation in root cultures of Lotus corniculatus (bird’s foot trefoil). Plant Mol. Biol. 35:443 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. Jende-Strid B. Gene-enzyme relations in the pathway of flavonoid biosynthesis in barley. Theor. Appl. Genet. 81:668 (1991).

    Article  CAS  Google Scholar 

  23. Jende-Strid B. Genetic control of flavonoid biosynthesis in barley. Hereditas 119:187 (1993).

    Article  CAS  Google Scholar 

  24. Damiani, F.; Paulocci, F.; Cluster, P.D.; Arcioni, S.; Tanner, G.J.; Joseph, R.J.; Yi, Y.G.; Demajnik, J.; Larkin, P.J. Tissue-specific up-and down-regulation of tannin synthesis in transgenic Lotus corniculatus plants. In: Vercauteren, J.; Cheze, C.; Dumon, M.C.; Weber, J.F. (eds.) Polyphenols communications 96. Groupe Polyphenols, Bordeaux (France). 219 (1996).

    Google Scholar 

  25. Robbins, M.P.; Bavage, A.D.; Morris, P. Options for the genetic manipulation of astringent and antinutritional metabolites in fruit and vegetables. In: Tomas-Barberan, F.A.; Robins, R.J. (eds.). Phytochemistry of fruit and vegetables. Clarendon Press, Oxford, p. 251 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Robbins, M.P., Bavage, A.D., Morris, P. (1999). Designer Tannins: Using Genetic Engineering to Modify Levels and Structures of Condensed Tannins in Lotus corniculatus . In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics