Skip to main content

Methods for Determining the Degree of Polymerization of Condensed Tannins: A New 1H-NMR Procedure Applied to Cider Apple Procyanidins

  • Chapter
Plant Polyphenols 2

Part of the book series: Basic Life Sciences ((BLSC,volume 66))

Abstract

The degree of polymerization (DP) that corresponds to the number of flavan-3-ol units is one of the most important features that characterize condensed tannins (proanthocyanidins) because of its direct link to the various properties of this kind of phenolic compound. In their definition of vegetable tanning substances, Bate-Smith and Swain1 referred to the molecular weight that must range from 500 to 3,000. By considering their extraction, their biological activities, their sensory effects, condensed tannins often behave according to their molecular weight, although this single feature is quite insufficient to show evidence of all their properties. On the whole, the molecular weight of condensed tannins is related to their ability to associate with proteins and polysaccharides; this “tanning capacity” varies in an increasing order with the DP.2–6 This property is also related to other applications. For instance, the work of Lea and Arnold7 pointed out the influence of the DP of procyanidins in relation to bitterness and astringency of cider. Proanthocyanidins are also partly involved in haze formation in beers: the capacity of beer tannins to precipitate proteins increases with the DPn.4,5,8 Many studies dealing with the biological activities of proanthocyanidins also show that antioxidant,9 antifungal,10 anti-enzymic,11 antisecretory,12 or antitumor13 activities may correlate with the DP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bate-Smith, E.C.; Swain, T. In: Masson, H.S.; Florkin, A.M. (eds.) Comparative biochemistry. Vol. III, Academic Press, New York, (1962).

    Google Scholar 

  2. Haslam E. Polyphenol-protein interactions. Biochem. J. 139:285 (1974).

    PubMed  CAS  Google Scholar 

  3. Arnold R.A.; Noble A.C.; Singleton V.L. Bitterness and astringency of phenolic fractions in wine. J. Agric. Food Chem. 28:675 (1980).

    Article  CAS  Google Scholar 

  4. Porter L.J.; Woodruffe J. Haemanalysis: the relative astringency of proanthocyanidin polymer. Phytochemistry 23:1255 (1984).

    Article  CAS  Google Scholar 

  5. Asano K.; Ohtsu K.; Shinagawa K.; Hashimoto H. Affinity of proanthocyanidins and their oxidation products for haze-forming proteins of beer and the formation of chill haze. Agric. Biol. Chem. 48:1139 (1984).

    Article  CAS  Google Scholar 

  6. Cheynier, V.; Rigaud, J.; Ricardo da Silva, J.M. Structure of procyanidin oligomers isolated from grape seeds in relation to some of their chemical properties. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols—synthesis, properties, significance: Plenum Press, New York, p. 281 (1992).

    Google Scholar 

  7. Lea A.G.H.; Arnold G.M. The phenolics of ciders: bitterness and astringency. J. Agric. Food Chem. 29:478 (1978).

    Article  CAS  Google Scholar 

  8. Delcour J.A.; Schoeters M.M.; Meysman E.W.; Dondeyne P. The intrisic influence of catechins and procyanidins on beer haze formation. J. Inst. Brew. 90:381 (1984).

    CAS  Google Scholar 

  9. Vennat B.; Bos M.-A.; Pourrat A.; Bastide P. Procyanidins from tormentil: fractionation and study of the anti-radical activity towards Superoxide anion. Biol. Pharm. Bull. 17:1613 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. Eberhard T.L.; Young R.A. Conifer seed cone proanthocyanidin polymers: characterization by 13C NMR spectroscopy and determination of antifungal activities. J. Agric. Food Chem. 42:1704 (1994).

    Article  Google Scholar 

  11. Bos M.-A.; Vennat B.; Meunier M.T.; Pouget M.-P.; Pourrat A.; Fialip J. Procyanidins from tormentil: antioxidant properties towards lipoperoxidation and anti-elastase activity. Biol. Pharm. Bull. 19:146 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. Hor M.; Heinrich M.; Rimpler H. Proanthocyanidin polymers with antisecretory activity and proanthocyanidin oligomers from Guazuma ulmifolia bark. Phytochemistry 42:109 (1996).

    Article  Google Scholar 

  13. Gali H.U.; Perchellet E.M.; Gao X.M.; Karchesy J.J.; Perchellet J.P. Comparison of the inhibitory effects of monomeric, dimeric and trimeric procyanidins on the biochemical markers of skin tumor promotion in mouse epidermis in vivo. Planta Med. 60:235 (1994).

    Article  PubMed  CAS  Google Scholar 

  14. Goldstein J.L.; Swain T. Changes in tannins in ripening fruits. Phytochemistry 2:371 (1963).

    Article  CAS  Google Scholar 

  15. Butler L.G.; Price L.; Brotherton J.E. Vanillin assay for proanthocyanidins (condensed tannins) modification of the solvent for estimation of the degree of polymerization. J. Agric. Food Chem. 30:1087 (1982).

    Article  CAS  Google Scholar 

  16. Ribéreau-Gayon P.; Stonestreet E. Dosage des tanins du vin rouge et détermination de leur structure. Chim. Anal. 48:188 (1966).

    Google Scholar 

  17. Scalbert, A. Quantitative methods for the estimation of tannins in plant tissues. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols—synthesis, properties, significance. Plenum Press, New York, p. 259 (1992).

    Google Scholar 

  18. Swain T.; Hillis W.E. The phenolic constituents of Prunus domestica. I—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10:63 (1959).

    Article  CAS  Google Scholar 

  19. McMurrough I.; McDowell J. Chromatographic separation and automated analysis of flavanols. Analytical Biochemistry 91:92 (1978).

    Article  PubMed  CAS  Google Scholar 

  20. Putman L.J.; Butler L.G. Separation of high molecular weight sorghum procyanidins by high performance liquid chromatography. J. Agric. Food Chem. 37:943 (1989).

    Article  CAS  Google Scholar 

  21. Butler L.G. Relative degree of polymerization of sorghum tannin during seed development and maturation. J. Agric. Food Chem. 30:1090 (1982).

    Article  CAS  Google Scholar 

  22. Thompson R.S.; Jacques D.; Haslam E.; Tanner R.N.J. Plant proanthocyanidins. Part I. Introduction; the isolation, structure, and distribution in nature of plant procyanidins. J. Chem. Soc., Perkin Trans. 1:1387 (1972).

    Article  Google Scholar 

  23. Gupta R.K.; Haslam E. Plant proanthocyanidins. Part 5._Sorghum polyphenols. J. Chem. Soc., Perkin Trans. 1:892 (1978).

    Article  Google Scholar 

  24. Shen Z.; Haslam E.; Falshaw C.P.; Begley M.J. Procyanidins and polyphenols of Larix gmelini bark. Phytochemistry 25:2629 (1986).

    Article  CAS  Google Scholar 

  25. Prieur C.; Rigaud J.; Cheynier V.; Moutounet M. Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry 36:781 (1994).

    Article  CAS  Google Scholar 

  26. Souquet J.M.; Cheynier V.; Brossaud F.; Moutounet M. Polymeric proanthocyanidins from grape skins. Phytochemistry 43:509 (1996).

    Article  CAS  Google Scholar 

  27. Matthews S.; Mila I.; Scalbert A.; Donnelly D.M.X. Extractible and non-extractible proanthocyanidins in barks. Phytochemistry 45:405 (1997).

    Article  CAS  Google Scholar 

  28. Guyot S.; Doco T.; Souquet J.-M.; Moutounet M.; Drilleau J.F. Characterization of highly polymerized procyanidins in cider apple (Malus silvestris var. Kermerrien) skin and pulp. Phytochemistry 44:351 (1997).

    Article  CAS  Google Scholar 

  29. Tanaka, T.; Takahashi, R.; Kouno, I.; Nonaka, G.I. Chemical evidence for de-astringency (insolubilization of tannins) of persimmon fruit. J. Chem. Soc., Perkin Trans. I:3013 (1994).

    Google Scholar 

  30. Foo L.Y.; Porter L.J. Prodelphinidin polymers: definition of structural units. J. Chem. Soc., Perkin Trans. 1:1186 (1978).

    Article  Google Scholar 

  31. Matsuo T.; Tamaru K.; Saburo I. Chemical degradation of condensed tannin with phloroglucinol in acidic solvents. Agric. Biol. Chem. 48:1199 (1984).

    Article  CAS  Google Scholar 

  32. Koupai-Abyazani M.R.; Muir A.D.; Bohm B.A.; Towers G.H.N.; Gruber M.Y. The proanthocyanidin polymers in some species of Onobrychis. Phytochemistry 34:113 (1993).

    Article  CAS  Google Scholar 

  33. Matthews S.; Mila I.; Scalbert A.; Pollet B.; Lapierre C., HervÈ du Penhoat C.L.M.; Rolando C.; Donnelly D.M.X. Method for estimation of proanthocyanidins based on their acid depolymerization in the presence of nucleophiles. J. Agric. Food Chem. 45:1195 (1997).

    Article  CAS  Google Scholar 

  34. Hemingway R.W.; McGraw G.W. Kinetics of acid-catalysed cleavage of procyanidins. J. Wood Chem. Tech. 3:421 (1983).

    Article  CAS  Google Scholar 

  35. Brown, B.R.; Shaw, M.R. Reactions of flavonoids and condensed tannins with sulphur nucleophiles. J. Chem. Soc., Perkin Trans I:2036 (1974).

    Article  Google Scholar 

  36. Hsu F.L.; Nonaka G.I.; Nishioka I. Tannins and related compounds. XXXIII. Isolation and characterizationof procyanidin in Dioscorea cirrhosa Lour. Chem. Pharm. Bull. 33:3293 (1985).

    Article  CAS  Google Scholar 

  37. McGraw G.W.; Steynberg J.P.; Hemingway R.W. Condensed tannins: a novel rearrangement of procyanidins and prodelphinidins in thiolytic cleavage. Tetrahedron Letts. 34:987 (1993).

    Article  CAS  Google Scholar 

  38. Rigaud J.; Perez-Ilzarbe J.; Ricardo da Silva J.M.; Cheynier V. Micromethod for identification of proanthocyanidin using thiolysis monitored by high-performance liquid chromatography. J. Chromatogr. 540:401 (1991).

    Article  CAS  Google Scholar 

  39. Lea A.G.H.; Bridle P.; Timberlake C.F.; Singleton V.L. The procyanidins of white grapes and wines. Am. J. Enol. Vitic 30:289 (1979).

    CAS  Google Scholar 

  40. Guyot, S.; Marnet, N.; Laraba, D.; Sanoner, P.; Drilleau, J.-F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien). J. Agric. Food Chem. 46:1698 (1998).

    Article  CAS  Google Scholar 

  41. Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J.; Thomas, W.A.; Jones, W.T. Direct proof of a homogeneous polyflavan-3-ol structure for polymeric proanthocyanidins. J. Chem. Soc. Chem. Commun.:375 (1979).

    Google Scholar 

  42. Czochanska, Z.; Foo, L.Y.; Newman, R.H.; Porter, L.J. Polymeric proanthocyanidins. Stereochemistry, structural units and molecular weight. J. Chem. Soc., Perkin Trans. I:2278 (1980).

    Google Scholar 

  43. Foo L.Y.; Porter L.J. The phytochemistry of proanthocyanidin polymers. Phytochemistry 19:1747 (1980).

    Article  CAS  Google Scholar 

  44. Porter, L.J.; Newman, R.H.; Foo, L.Y.; Wong, H.; Hemingway, R.W. Polymeric proanthocyanidins. 13C N.M.R. studies of procyanidins. J. Chem. Soc., Perkin Trans I:1217 (1982).

    Article  Google Scholar 

  45. Newman R.H.; Porter L.J.; Foo L.Y.; Johns S.R.; Willing R.I. High-resolution 13C NMR studies of proanthocyanidin polymers (condensed tannins). Magn. Reson. Chem. 25:118 (1987).

    Article  CAS  Google Scholar 

  46. Karchesy J.J.; Hemingway R.W. Loblolly pine bark polyflavonoids. J. Agric Food Chem. 28:222 (1980).

    Article  CAS  Google Scholar 

  47. Williams V.M.; Porter L.J.; Hemingway R.W. Molecular weight profiles of proanthocyanidin polymers. Phytochemistry 22:569 (1983).

    Article  CAS  Google Scholar 

  48. Rigaud, J.; Escribano-Bailon, M.T.; Prieur, C.; Souquet, J.M.; Cheynier, V. Normal-phase high-performance liquid Chromatographic separation of procyanidins from cacao beans and grape seeds. J. Chromatogr. A, 654:255 (1993).

    Article  Google Scholar 

  49. Bae Y.S.; Foo L.Y.; Karchesy J.J. GPC of natural procyanidin oligomers and polymers. Holzforschung 48:4 (1994).

    Article  CAS  Google Scholar 

  50. Porter L.J. Number-and weight-average molecular weights for some proanthocyanidin polymers (condensed tannins). Aust. J. Chem. 39:557 (1986).

    Article  CAS  Google Scholar 

  51. Lea A.G.H. The phenolics of ciders: oligomeric and polymeric procyanidins. J Sci. Food Agric. 29:471 (1978).

    Article  PubMed  CAS  Google Scholar 

  52. Cai Y.; Evans F.J.; Phillipson J.D.; Zenk M.H.; Gleba Y.Y. Polyphenolic compounds from Croton lechleri. Phytochemistry 30:2033 (1991).

    Article  CAS  Google Scholar 

  53. Cheynier V.; Doco T.; Fulcrand H.; Guyot S.; Le Roux, E.; Souquet J.M.; Rigaud J.; Moutounet M. ESI-MS analysis of polyphenolic oligomers and polymers. Analusis 28:32 (1997).

    Google Scholar 

  54. Kolodziej, H. 1H NMR spectral studies of procyanidin derivatives: Diagnostic 1H NMR parameters applicable to the structural elucidation of oligomeric procyanidins. In: Hemingway, R.W.; Laks, P.E. (eds.) Plant polyphenols—synthesis, properties, significance. Plenum Press, New York, p. 295 (1992).

    Google Scholar 

  55. Balas L.; Vercauteren J.; Laguerre M. 2D NMR Structure elucidation of proanthocyanidins: the special case of the catechin-(4α-8)-catechin-(4α-6)-catechin trimer. Magn. Reson. Chem. 33:85 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Guyot, S., Le Guernevé, C., Marnet, N., Drilleau, JF. (1999). Methods for Determining the Degree of Polymerization of Condensed Tannins: A New 1H-NMR Procedure Applied to Cider Apple Procyanidins. In: Gross, G.G., Hemingway, R.W., Yoshida, T., Branham, S.J. (eds) Plant Polyphenols 2. Basic Life Sciences, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4139-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4139-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46218-4

  • Online ISBN: 978-1-4615-4139-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics