Skip to main content

Ferritin, Biomineralization, and Magnetic Resonance Imaging

  • Chapter
Iron Biominerals

Abstract

The remarkable technological advances in magnetic resonance imaging (MRI), combined with the increasing utility of MRI as a clinical diagnostic modality, have generated a renewed interest in paramagnetic ions and their macromolecular complexes in vivo. The connection should be rather clear: contrast in MRI depends in the main on the relaxation rates of the protons of mobile water molecules of tissue, and these rates can be altered significantly by the introduction of tracer amounts of paramagnetic centers. Indeed, Bloch and collaborators, in their discovery of proton magnetic resonance in liquids over four decades ago (Bloch, 1946; Bloch et al., 1946), added Fe3+ ions to water to increase the proton relaxation rate to a convenient value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aasa, R., 1970, Powder line shapes in paramagnetic resonance spectra of high-spin ferric complexes, J. Chem. Phys. 52:3919.

    Article  CAS  Google Scholar 

  • Aisen, P. and Listowsky, I., 1980, Iron storage proteins, Ann. Rev. Biochem. 49:357.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, H. F., Brown III, R. D., Koenig, S. H., and Swartz, H. M., 1987, Effects of nitroxides on the magnetic field and temperature dependence of 1/T 1, of solvent water protons, Magn. Reson. Med. 4:93.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, F., 1946, Nuclear induction, Phys. Rev. 70:460.

    Article  CAS  Google Scholar 

  • Bloch, F., Hansen, W. W., and Packard, M., 1946, The nuclear induction experiment, Phys. Rev. 70:474.

    Article  CAS  Google Scholar 

  • Brasch, R. C., Wesbey, G. E., Gooding, C. A., and Koerper, M. A., 1984, Magnetic resonance imaging of transfusional hemosiderosis complicating thalassemia major, Radiology 150:767.

    PubMed  CAS  Google Scholar 

  • Brown III, R. D.--, Brewer, C. F., and Koenig, S. K., 1977, Conformation states of concanavalin A: kinetics of transitions induced by interaction with Mn2+ and Cu2+ ions, Biochemistry, 16:3883.

    Article  PubMed  CAS  Google Scholar 

  • Enochs, W. S., Hyslop, W. B., Bennett, H. F., Brown III, R. D., Koenig, S. H., and Swartz, H. M., 1989, Sources of the increased longitudinal relaxation rates observed in melinotic melanoma. An in vitro study of synthetic melanins. Invest. Radiol. 24:794.

    Article  PubMed  CAS  Google Scholar 

  • Gillis, P. and Koenig, S. H., 1987, Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite, Magn. Reson. Med. 5:323.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, P. M., Artymiuk, P. J., Ford, G. C., Lawson, D. M., Smith, J. M. A., Treffry, A., and White, J. L., 1989, Ferritin: function and structural design of an iron-storage protein, in Biomineralization, Chemical and Biochemical Perspectives, S. Mann, J. Webb, and R. J. P. Williams, eds., VCH, Weinheim.

    Google Scholar 

  • Koenig, S. H., 1978, A novel derivation of the Solomon-Bloembergen Morgen equations: applications to solvent relaxation by Mn2+-protein complexes, J. Magn. Reson. 31:1.

    CAS  Google Scholar 

  • Koenig, S. H., Baglin, C. M., and Brown III, R. D., 1985, Magnetic field dependence of solvent proton relaxation in aqueous solutions of Fe3+ complexes, Magn. Reson. Med. 2:283.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, S. H. and Brown III, R. D., 1984, Relaxation of solvent protons by paramagnetic ions and its dependence on magnetic field and chemical environment: implications for NMR imaging, Magn. Reson. Med. 1:478.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, S. H. and Brown III, R. D., 1987a, Relaxometry of Tissue, in “NMR Spectroscopy of Cells and Organisms,” Vol. II, R. K. Gupta, ed., CRC Press, Boca Raton, FL.

    Google Scholar 

  • Koenig, S. H. and Brown III, R. D., 1987b, Relaxometry of magnetic resonance imaging contrast agents, in “Magnetic Resonance Annual,” H. Y. Kressel, ed., Raven Press, NY.

    Google Scholar 

  • Koenig, S. H., Brown III, R. D., Gibson, J. F., Ward, R. J., and Peters, T. J., 1986, Relaxometry of ferritin solutions and the influence of the Fe3+ core ions, Magn. Resort. Med. 3:755.

    Article  CAS  Google Scholar 

  • Koenig, S. H. and Gillis, P., 1988, Transverse relaxation (l/T2) of solvent protons induced by magnetized spheres and its relevance to contrast in MRI, Invest. Radiol. (Supplement) 23:S224.

    Article  CAS  Google Scholar 

  • Koenig, S. H. and Schillinger, W. E., 1969, Nuclear magnetic relaxation dispersion in protein solutions II: transferrin, J. Biol. Chem. 244:6520.

    PubMed  CAS  Google Scholar 

  • Micklitz, W. and Lippard, S., 1989, Heptadecanuclear mixed metal iron oxo-hydroxo complexes, [Fe16MO10(OH)10(O2CPh)20], M = Mn or Co, structurally comprised of two fragments derived from [Fe11O6(OH)6(O2CPh)15], J. Am. Chem. Soc. 111:6856.

    Article  CAS  Google Scholar 

  • Rosenberg, L. P. and Chasteen, N. D., 1982, Initial iron binding to horse spleen apoferritin, in The Biochemistry and Physiology of Iron, P. Saltman and J. Hegenauer, eds.,Elsevier North Holland.

    Google Scholar 

  • Schenck, J. F., Mueller, O. M., Souza, S. P., Dumoulin, C. L., and Hussain, M. A., 1989, Iron-dependent contrast in NMR imaging of the human brain at 4.0 T, Eighth Annual Meeting, Society of Magnetic Resonance in Medicine, Amsterdam, p. 9, (Abstract).

    Google Scholar 

  • St. Pierre, T. G., Webb, J., and Mann, S., 1989, Ferritin and hemosiderin: structural and magnetic studies of the iron core, in Biomineralization, Chemical and Biochemical Perspectives, S. Mann, J. Webb, and R. J. P. Williams, eds., VCH, Weinheim.

    Google Scholar 

  • Stark, D. D., Moseley, M. E., Bacon, B. R., Moss, A. A., Goldberg, H. I., Bass, N. M., and James, T. L., 1985, Magnetic resonance imaging and spectroscopy of hepatic iron overload, Radiology 154:137.

    PubMed  CAS  Google Scholar 

  • Thulborn, K. R., Waterton, J. C., Matthews, P. M., and Radda, G. K., 1982, Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field, Biochim. Biophys. Acta 714:262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koenig, S.H. (1991). Ferritin, Biomineralization, and Magnetic Resonance Imaging. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics