Skip to main content

Some Speculations on the Role of Oxyradicals in the Conversion of Ferritin to Hemosiderin

  • Chapter
Iron Biominerals

Abstract

A number of recent studies have implicated the involvement of ferritin iron in oxygen radical reactions. Hemosiderin has long been thought to be a degradation product of ferritin. A recent series of papers have indicated that oxygen radical damage to proteins result in an increase in susceptibility to a novel proteolytic system. We suggest a possible relationship between radical damage to ferritin and hemosiderin via this proteolytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. C.E. Thomas, L.A. Morehouse, and S.D. Aust, Ferritin and Superoxide-dependent Lipid Peroxidation, J. Biol. Chem., 260(6):3275, (1985).

    PubMed  CAS  Google Scholar 

  2. P. Biemond, A. Swaak, H. van Eijk, and J.F. Koster, Superoxide Dependent Iron Release From Ferritin in Inflammatory Diseases, Free Rad. Biol. Med., 4:185, (1988).

    Article  PubMed  CAS  Google Scholar 

  3. J.K. Grady, Y. Chen, N.D. Chasteen, and D.C. Harris, Hydroxyl Radical Production during Oxidative Deposition of Iron in Ferritin, J. Biol. Chem., 264, in press, (1989).

    Google Scholar 

  4. J-C. Sibille, K. Doi and P. Aisen, Hydroxyl Radical Formation and Iron-binding Proteins, J. Biol. Chem., 262(1):59, (1987).

    CAS  Google Scholar 

  5. B. Halliwell and J.M.C. Gutteridge, Oxygen Free Radicals and Iron in Relation to Biology and Medicine: Some Problems and Concepts, Arch. Biochem. Biophvs., 246(2):501, (1986).

    Article  CAS  Google Scholar 

  6. W.A. Pryor, Cancer and Free Radicals, in “Antimutagenesis and Anticarcinogenesis Mechanisms”, D.M. Shankel, P.E. Hartman, T. Kada, and A. Hollaender (eds.), Plenum Press, New York, pgs. 45–59, 1986.

    Chapter  Google Scholar 

  7. S.D. Aust, Sources of Iron for lipid Peroxidation in Biological Systems, in “Oxygen Radicals and Tissue Injury: Proceedings of the Upjohn Symposium”, 27–33, (1988).

    Google Scholar 

  8. B. Halliwell and J.M.C. Gutteridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J., 219:1, (1984).

    PubMed  CAS  Google Scholar 

  9. T.G. Hoy and A. Jacobs, Ferritin Polymers and the Formation of Hemosiderin, Br. J. Haematol., 49:593, (1981).

    Article  PubMed  CAS  Google Scholar 

  10. C.E. Thomas and S.D. Aust, Reductive Release of Iron from Ferritin by Cation Free Radicals of Paraquat and Other Bipyridyls, J. Biol. Chem., 261(28):13064, (1986).

    PubMed  CAS  Google Scholar 

  11. B.J. Bolann and R.J. Ulvik, Release of iron From ferritin by xanthine oxidase: Role of the superoxide radical, Biochem. J., 243:55, (1987).

    PubMed  CAS  Google Scholar 

  12. P. Biemond, A.J.G. Swaak, C.M. Biendorff and J.F. Koster, Superoxide-dependent and -independent mechanism of iron mobilization from ferritin by xanthine oxidase: Implications for oxygen-free-radical-induced tissue destruction during ischemia and inflammation, Biochem. J., 239:169, (1986).

    PubMed  CAS  Google Scholar 

  13. D.W. Reif, J. Schubert, and S.D. Aust, Iron Release from Ferritin and Lipid Peroxidation by Radiolytically Generated Reducing Radicals, Arch. Biochem. Biophvs., 264(1):238, (1988).

    Article  CAS  Google Scholar 

  14. V.M. Samokyszyn, C.E. Thomas, D.W. Reif, M. Saito and S.D. Aust, Release of Iron From Ferritin and Its Role in Oxygen Toxicities, Drug. Metab. Rev., 193(3&4):283, (1988).

    Article  Google Scholar 

  15. P. Biemond, A.J.G. Swaak, H.G. van Eijk and J.F. Koster, Intraarticular Ferritin-Bound Iron in Rheumatoid Arthritis, Arthritis Rheum., 29(10):1187, (1986).

    Article  PubMed  CAS  Google Scholar 

  16. R.F. Boyer, H.M. Clark and A.P. LaRoche, Reduction and Release of Ferritin Iron by Plant Phenolics J. Inorg. Biochem., 32:171, (1988).

    Article  PubMed  CAS  Google Scholar 

  17. C.E. Thomas and S.D. Aust, Release of Iron from Ferritin by Cardiotoxic Anthracycline Antibiotics, Arch. Biochem. Biophvs, 248(2):684, (1986).

    Article  CAS  Google Scholar 

  18. G.J. Kontoghiorghes, Iron Mobilization from ferritin using α-oxohydroxy heteroaromatic chelators, Biochem. J., 233:299, (1986).

    PubMed  CAS  Google Scholar 

  19. M.J. O’Connell and T.J. Peters, Ferritin and Haemosiderin in Free Radical Generation, Lipid Peroxidation and Protein Damage, Chem. Phvs. Lipids, 45:241, (1987).

    Article  Google Scholar 

  20. S.C. Andrews, A. Treffry and P.M. Harrison, Siderosomal ferritin: The missing link between ferritin and hemosiderin?, Biochem. J., 245:439, (1987).

    PubMed  CAS  Google Scholar 

  21. S.C. Andrews, A. Treffry and P.M. Harrison, A new form of ferritin heterogeneity explained: Isolation and identification of a nineteen-amino-acid-residue fragment from siderosomal ferritin of rat liver, Biochem. J., 245:447, (1987).

    PubMed  CAS  Google Scholar 

  22. S.C. Andrews, M.C. Brady, A. Treffry, J.M. Williams, S. Mann, M.I. Cleton, W. de Bruijn and P.M. Harrison, Studies on haemosiderin and ferritin from iron-loaded rat liver, Biol. Metals, 1:33, (1988).

    Article  CAS  Google Scholar 

  23. R.L. Wixom, L. Pritkin and H.N. Munro, Hemosiderin: Nature, Formation, and Significance, Int. Rev. Exp. Pathol., 22:193, (1980).

    PubMed  CAS  Google Scholar 

  24. G. Richter, Studies of Iron Overload: Rat Liver Siderosome Ferritin, Lab. Invest., 50:26, (1984).

    PubMed  CAS  Google Scholar 

  25. R.J. Ward, M.J. O’Connell, D.P.E. Dickson, N.M.K. Reid, V.J. Wade, S. Mann, A. Bomford and T.J. Peters, Biochemical studies of iron cores and polypeptide shells of haemosiderin isolated from patients with primary or secondary haemochromatosis, Biochim. Biophvs. Acta, 993(1):131, (1989).

    Article  CAS  Google Scholar 

  26. M.P. Weir, J.F. Gibson and T.J. Peters, Biochemical studies on the isolation and characterization of human spleen haemosiderin, Biochem. J., 223:31, (1984).

    PubMed  CAS  Google Scholar 

  27. M. Heusterspreute and R.R. Crichton, Amino Acid Sequence of Horse Spleen Apoferritin, FEBS. Lett., 129:322, (1981).

    Article  PubMed  CAS  Google Scholar 

  28. K.J.A Davies, Protein Damage and Degradation by Oxygen Radicals: I. General Aspects, J. Biol. Chem., 262(20):9895, (1987).

    PubMed  CAS  Google Scholar 

  29. K.J.A Davies, M.E. Delsignore and S.W. Lin, Protein Damage and Degradation by Oxygen Radicals: II. Modification of Amino Acids, J. Biol. Chem., 262(20):9902, (1987).

    PubMed  CAS  Google Scholar 

  30. K.J.A Davies and M.E. Delsignore, Protein Damage and Degradation by Oxygen Radicals: III. Modification of Secondary and Tertiary Structure, J. Biol. Chem., 262(20):9908, (1987).

    PubMed  CAS  Google Scholar 

  31. K.J.A Davies, S.W. Lin and R.E. Pacifici, Protein Damage and Degradation by Oxygen Radicals: IV. Degradation of Denatured Protein, J. Biol. Chem., 262(20):9914, (1987).

    PubMed  CAS  Google Scholar 

  32. P.M. Harrison, A. Treffry and T.H. Lilley, Ferritin as an Iron-Storage Protein: Mechanisms of Iron Uptake. J.Inorg. Biochem., 27:287, (1986).

    Article  PubMed  CAS  Google Scholar 

  33. E.C. Theil, Ferritin: Structure, Gene Regulation, and Cellular Function in Animals, Plants, and Microorganisms, Ann. Rev. Biochem., 56:289, (1987).

    Article  PubMed  CAS  Google Scholar 

  34. J.R. Mertz and E.C. Theil, Subunit Dimers in Sheep Spleen Apoferritin, J. Biol. Chem., 258:11719, (1983).

    PubMed  CAS  Google Scholar 

  35. S. Mann, V.J. Wade, D.P.E. Dickson, N.M.K. Reid, R.J. Ward, M. O’Connell and T.J. Peters, Structural specificity of haemosiderin iron cores in iron-overload diseases, FEBS Lett., 234(1):69, (1988).

    Article  PubMed  CAS  Google Scholar 

  36. D.P.E. Dickson, N.M.K. Reid, S. Mann, V.J. Wade, R.J. Ward and T.J. Peters, Mossbauer Spectroscopy, Electron Microscopy and Electron Diffraction Studies of Small Particle Magnetic Systems: Identification of Disease Specific Haemosiderins, Hvperfine Interactions, 45:225, (1989).

    Google Scholar 

  37. K.R. Bridges, Ascorbic Acid Inhibits Lysosomal Autophagy of Ferritin, J. Biol. Chem., 262(30):14773, (1987).

    PubMed  CAS  Google Scholar 

  38. S. Roberts and A. Bomford, Ferritin Iron Kinetics and Protein Turnover in K562 Cells, J. Biol. Chem., 263(35):19181, (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grady, J.K., Chasteen, N.D. (1991). Some Speculations on the Role of Oxyradicals in the Conversion of Ferritin to Hemosiderin. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics