Skip to main content

Biomineralization of Iron Sulfides in Magnetotactic Bacteria from Sulfidic Environments

  • Chapter
Iron Biominerals

Abstract

Magnetotactic bacteria contain intracellular iron mineral inclusions termed magnetosomes (Balkwill et al., 1980) which impart a permanent magnetic dipole moment to the cell resulting in its alignment and navigation in magnetic fields (Blakemore, 1975, 1982; Frankel, 1984). Various methods have been used to determine the mineral phase of the magnetosomes including Mössbauer spectroscopy, x-ray powder diffraction, selected area/micro-electron diffraction, and energy dispersive x-ray analysis (Frankel et al., 1979; Towe and Moench, 1981; Sparks et al., 1990). The particles in almost all magnetotactic bacteria have been shown to consist of the mineral magnetite (Fe3O4) (Frankel et al., 1979; Towe and Moench, 1981; Matsuda et al., 1983; Mann et al., 1987; Bazylinski et al., 1988), sometimes admixed with hydrous ferric oxide, a precursor to Fe3O4 precipitation (Frankel et al., 1983; Bazylinski et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Balkwill, D. L., Maratea, D., and Blakemore, R. P., 1980, Ultrastructure of a magnetotactic spirillum, J. Bacteriol., 141: 1399.

    PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., and Blakemore, R. P., 1983a, Denitrification and assimilatory nitrate reduction in Aquaspirillutn magnetotacticum, Appl. Environ. Microbiol., 46:1118.

    PubMed  CAS  Google Scholar 

  • Bazylinski, D. A., and Blakemore, R. P., 1983b, Nitrogen fixation (acetylene reduction) in Aquaspirillum magnetotacticum, Curr. Microbiol., 9: 305.

    Article  CAS  Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., and Jannasch, H. W., 1988, Anaerobic magnetite production by a marine magnetotactic bacterium, Nature (London), 333: 518.

    Article  Google Scholar 

  • Bazylinski, D. A., Howes, B. L., and Jannasch, H. W., 1990, Denitrification, nitrogen-fixation and nitrous oxide concentrations through the Black Sea oxic-anoxic interface, Deep— Sea Res., submitted.

    Google Scholar 

  • Berner, R. A., 1967, Thermodynamic stability of sedimentary iron sulfides, Amer. J. Sci., 265: 773.

    Article  CAS  Google Scholar 

  • Berner, R. A., 1970, Sedimentary pyrite formation, Amer. J. Sci., 268: 1.

    Article  CAS  Google Scholar 

  • Berner, R. A., 1974, Iron sulfides in Pleistocene deep Black Sea sediments and their palaeooceanographic significance, in: “The Black Sea- Geology, Chemistry, Biology”, AAPG Memoir 20.

    Google Scholar 

  • Blakemore, R. P., 1975, Magnetotactic bacteria, Science, 190: 377.

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, R. P., 1982, Magnetotactic bacteria, Ann. Rev. Microbiol., 36: 217.

    Article  CAS  Google Scholar 

  • Blakemore, R. P., Short, K. A., Bazylinski, D. A., Rosenblatt, C., and Frankel, R. B., 1985, Microaerobic conditions are required for magnetite formation within Aquaspirillum tnagnetotacticum, Geomicrobiol. J., 4: 53.

    Article  CAS  Google Scholar 

  • Canfield, D. E., and Berner, R. A., 1987, Dissolution and pyritization of magnetite in anoxic marine sediments, Geochim. Cosmochim. Acta, 51:645.

    Article  CAS  Google Scholar 

  • Creer, K. M., 1974, Geomagnetic variations for the interval 7,000–25,000 yr. B. P. as recorded in a core of sediment from station 1474 of the Black Sea cruise of “Atlantis II”, Earth Planet. Sci. Lett., 23: 34.

    Article  Google Scholar 

  • Dell, C. I., 1972, An occurrence of greigite in Lake Superior sediments, Amer. Mineral., 57: 1303.

    CAS  Google Scholar 

  • Demitrack, A., 1985, A search for bacterial magnetite in the sediments of Eel Marsh, Woods Hole, Massachusetts, in: “Magnetite Biomineralization and Magnetoreception in Organisms”, J. L. Kirschvink, D. S. Jones, and B. F. Macfadden, eds., Plenum Publishing Corp.

    Google Scholar 

  • Farina, M., Lins de Barros, H., Motta de Esquivel, D., and Danon, J., 1983, Ultrastructure of a magnetotactic microorganism, Biol. Cell, 48: 85.

    Google Scholar 

  • Farina, M., Sollorazano, G., and Vieira, G. J., 1986, Dark field and x-ray microanalysis of magnetotactic microorganisms’ crystals, Proc. XIth Int. Cong. on Electron Microscopy, Kyoto, p. 3369.

    Google Scholar 

  • Farina, M., Esquivel, D. M. S., and Lins de Barros, H. G. P., 1990, Magnetic iron-sulphur crystals from a magnetotactic microorganism, Nature (London), 343: 256.

    Article  CAS  Google Scholar 

  • Frankel, R. B., Blakemore, R. P., and Wolfe, R. S., 1979, Magnetite in freshwater magnetotactic bacteria, Science, 203:1355.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, R. B., Papaefthymiou, G. C., Blakemore, R. P., and O’Brien, W., 1983, Fe3O4 precipitation in magnetotactic bacteria, Biochim. Biophys. Acta, 763:147.

    Article  CAS  Google Scholar 

  • Frankel, R.B., 1984, Magnetic guidance of organisms, Annu. Rev. Biophys. Bioeng., 13: 85.

    Article  PubMed  CAS  Google Scholar 

  • Freke, A. M., and Tate, D., 1961, The formation of magnetic iron sulphide by bacterial reduction of iron solutions, J. Biochem. Microbiol. Technol. Eng., 3: 29.

    Article  CAS  Google Scholar 

  • Hartman, H., 1975, Speculations on the origin and evolution of metabolism, J. Mol. Evol., 4, 359.

    Article  PubMed  CAS  Google Scholar 

  • Howarth, R. W., 1979, Pyrite: its rapid formation in a salt marsh and its importance in ecosystem metabolism, Science, 203: 49.

    Article  PubMed  CAS  Google Scholar 

  • Issatchenko, B. L., 1912, The deposits of iron sulfide in bacteria, Bull. Jard. Inmp. Bot., St Petersburg, Vol. XII.

    Google Scholar 

  • Issatchenko, B. L., 1929, Zur Frage der biogenischen Bildimg des Pyrits, Int. Rev. ges. Hydrobiol. Hydrogr., 22:99.

    Article  Google Scholar 

  • Jedwab, J., 1967, Mineralisation en greigite de debris vegetaux d’une vase recente (Grot Geul), Soc. Belg. Geol. Bull., 76:1.

    Google Scholar 

  • Jones, H. E., Trudinger, P. A., Chambers, L. A., and Pyliotis, N. A., 1976, Metal accumulation by bacteria with particular reference to dissimilatory sulphate-reducing bacteria, Z. Allg. Mikrobiol., 16: 425.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K., and Nomura, M., 1972, Iron sulfides in the sediment cores from the Sea of Japan and their geophysical implications, Earth Planet. Sci. Lett., 16: 200.

    Article  CAS  Google Scholar 

  • Lins de Barros, H. G. P., and Motta de Equivel, D., 1985, Magnetotactic microorganisms found in muds from Rio de Janeiro- a general view, in: “Magnetite Biomineralization and Magnetoreception in Organisms”, J. L. Kirschvink, D. S. Jones, and B. F. Macfadden, eds., Plenum Publishing Corp.

    Google Scholar 

  • Love, L. G., and Zimmerman, D. O., 1961, Bedded pyrite and microorganisms from the Mount Isa Shale, Econ. Geol., 56: 873.

    Article  CAS  Google Scholar 

  • Love, L. G., and Murray, J. W., 1963, Biogenic pyrite in recent sediments of Christchurch Harbour, England, Amer. J. Sci., 261: 433.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, G. L. Jr., and Phillips, E. J. P., 1987, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature (London), 330: 252.

    Article  CAS  Google Scholar 

  • Mann, S., Sparks, N. H. C., and Blakemore, R. P., 1987a, Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria, Proc. R. Soc. Lond. B, 231: 469.

    Article  CAS  Google Scholar 

  • Mann, S., Sparks, N. H. C., and Blakemore, R. P., 1987b, Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria, Proc. R. Soc. Lond. B, 231:477.

    Article  CAS  Google Scholar 

  • Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W., 1990, Biomineralisation of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium, Nature (London), 343: 258.

    Article  CAS  Google Scholar 

  • Matsuda, T., Endo, J., Osakube, N., Tonomura, A., and Arii, T., 1983, Morphology and structure of biogenic magnetite particles, Nature (London), 302: 411.

    Article  CAS  Google Scholar 

  • Miller, L. P., 1950, Formation of metal sulfides through the activities of sulfate-reducing bacteria, Contr. Boyce Thompson Inst., 16: 85.

    CAS  Google Scholar 

  • Moench, T. T., and Konetzka, W. A., 1978, A novel method for the isolation and study of a magnetic bacterium, Arch. Mikrobiol., 119: 203.

    CAS  Google Scholar 

  • Morse, J. W., Millero, F. J., Cornwall, J. C., and Rickard, D., 1987, The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters, Earth-Sci. Rev., 24: 1.

    Article  CAS  Google Scholar 

  • Rickard, D. T., 1969a, The microbiological formation of iron sulphides, Stockhlm Contrib. Geol., 20: 50.

    Google Scholar 

  • Rickard, D. T., 1969b, The chemistry of iron sulfide formation at low temperatures, Stockholm Contrib. Geol., 20: 67.

    CAS  Google Scholar 

  • Rodgers, F. G., Blakemore, R. P., Blakemore, N. A., Frankel, R. B., Bazylinski, D. A., Maratea, D., and Rodgers, C., 1990, Intercellular structure in a many—celled magnetotactic procaryote, Arch. Microbiol., in press.

    Google Scholar 

  • Schieber, J., 1989, Pyrite mineralization in microbial mats from the mid-Proterozoic Newland Formation, Belt Supergroup, Montana, USA Sed. Geol., 64: 79.

    Article  CAS  Google Scholar 

  • Skinner, B. J., Erd, R. C., and Grimaldi, F. S., 1964, Greigite, the thio-spinel of iron; a new mineral, Amer. Mineral., 49: 543.

    CAS  Google Scholar 

  • Sparks, N. H. C., Lloyd, J., and Board, R. G., 1989, Saltmarsh ponds— a preferred habitat for magnetotactic bacteria?, Lett. Appl. Microbiol., 8:109.

    Article  Google Scholar 

  • Sparks, N. H. C., Mann, S., Bazylinski, D. A., Lovley, D. R., Jannasch, H. W., and Frankel, R. B., 1990, Structure and morphology of anaerobically-produced magnetite by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium, Earth Planet. Sci. Lett., in press.

    Google Scholar 

  • Towe, K. M., and Moench, T. T., 1981, Electron optical characterization of bacterial magnetite, Earth Planet Sci. Lett., 52: 213.

    Article  CAS  Google Scholar 

  • Trudinger, P. A., Lambert, I. B., and Skyring, G. W., 1972, Biogenic sulfide ores: a feasibility study, Econ. Geol., 67: 1114.

    Article  CAS  Google Scholar 

  • Wächtershäuser, G., 1988a, Pyrite formation, the first energy source for life: a hypothesis, System. Appl. Microbiol., 10: 207.

    Article  Google Scholar 

  • Wächtershäuser, G., 1988b, Before enzymes and templates: theory of surface metabolism, Microbiol. Rev., 53: 452.

    Google Scholar 

  • Wakeham, S. G., Howes, B. L., and Dacey, J. W. H., 1984, Dimethylsulfide in a stratified coastal salt pond, Nature (London), 310: 770.

    Article  CAS  Google Scholar 

  • Wakeham, S. G., Howes, B. L., Dacey, J. W. H., Schwarzenbach, R. P., and Zeyer, J., 1987, Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond, Geochim. Cosmochim. Acta, 51: 1675.

    Article  CAS  Google Scholar 

  • Williams, R. J. P., 1990, Iron and the origin of life, Nature (London), 343: 213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bazylinski, D.A., Frankel, R.B., Garratt-Reed, A.J., Mann, S. (1991). Biomineralization of Iron Sulfides in Magnetotactic Bacteria from Sulfidic Environments. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics