Skip to main content

Laser Induced Transitions in Muon Catalyzed Fusion

  • Chapter
Laser Interaction and Related Plasma Phenomena
  • 176 Accesses

Abstract

Nuclear fusion reactions of deuterium-tritium can be catalyzed by muons. When an energetic negative muon (μ) enters a deuterium-tritium mixture the following chain of reactions occurs: a) slowing down and atomic capture of μ, b) muon transfer to higher isotopes, c) μ-molecular formation d) nuclear fusion of dt. The muon is either released or captured by the nuclear fusion products (sticking). In analyzing the relevance of muon catalyzed fusion (mcf) for energy production, the problem is to maximize the number Xμ of fusion processes catalyzed by a single μ. Xμ is determined by the lifetime of μ and the frequency of the fusion events described above.

In this work it is suggested that powerful electromagnetic fields can increase the rates of the muon transfer and μ-molecular formation and thus enhance the value of Xμ.

The fusion cycle is inhibited by the slow transfer of muons between the ground states of deuterium and tritium. The fraction of muons reaching the deuterium ground state Q1S can be decreased (and thus increasing the number of muons transferred from du to the tritium ground state) by changing the route of the muon deexitation cascade under laser irradiation. The muon cascade is determined by a competition between radiative transitions, external Auger transitions, quenching of the muon levels and transfer processes. The muon transfer cross section from the 2S level of deuterium is larger by a factor of about 5 than the transfer cross section from the 2P level. Therefore the following two step process is proposed in order to enhance the rate of the muon transfer (1) : (a) a laser induced transition between the levels 2P and 2S of the deuterium (b) muon transfer by collisions to the tritium 2S level. The results show that a 0.2 eV laser (the Lamb shift in deuterium) with an intensity of about 109 W/cm2 can decrease the value of Q1S by a factor of three.

The rate of formation of the muonic molecule can also be enhanced by strong electromagnetic fields. We consider a three level system of the dtμ molecule a) a state in the continuum of tμ+d (b) the bound state of the molecule dtμ (J,V) = (1,1) and (c) the bound state (J,V) = (0,1). Under the influence of an external field a Stokes transition from the level (a) to level (b) takes place while the transition from (b) to (c) is occurring through an Auger process. It is shown that for a resonant laser frequency and intensities of 6×105 W/cm2 the Stokes efficiency (defined as the ratio between Stokes induced transitions and spontaneous decay) is about 50. However due to the stringent resonance conditions for practical lasers one uses the off resonance regime yielding an intensity of about 109 W/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. See for example the following review articles: (a) S.S. Gershtein and L.I. Ponomarev, “Muon Physics,” Vol. III, V.W. Hughes and C.S. Wu, Editors, Academic Press, N.Y. (1975), p. 141

    Chapter  Google Scholar 

  2. (b) L.I. Ponomarev, Proc. Sixth Int. Conf. on Atomic Physics, Plenum, N.Y. (1978), p. 182

    Google Scholar 

  3. (c) J. Rafelski, “Exotic Atoms,” K. Crowe and E. Duclos, Editors, Plenum, N.Y. (1979), p. 177

    Google Scholar 

  4. (d) L. Bracci and G. Fiorentini, Phys. Rep. 86, 169 (1982).

    Article  Google Scholar 

  5. (e) S. Eliezer, Laser and Particle Beams 6, 63 (1988).

    Article  Google Scholar 

  6. (a) L.I. Menshikov and L.I. Ponomarev, JETP Lett. 39, 663 (1984).

    Google Scholar 

  7. (b) L.I. Menshikov and L.I. Ponomarev, Z. Phys. D2, 1 (1986).

    Google Scholar 

  8. (a) S. Jones, Phys. Rev. Lett. 56, 588 (1986).

    Article  Google Scholar 

  9. (b) W.H. Breunlich et al., Phys. Rev. Lett. 58, 329 (1987).

    Article  Google Scholar 

  10. (c) K. Kabayashi, T. Ishihara and N. Toshima, Muon Cat. Fusion 2, 191 (1988).

    Google Scholar 

  11. Yu. V. Petrov and Yu. M. Shabelskii, Sov. S. Nucl. Phys. 30, 66 (1979).

    Google Scholar 

  12. (a) Yu,V. Petrov, Nature 285, 466 (1980).

    Article  Google Scholar 

  13. (b) S. Eliezer, T. Tajima, M.N. Rosenbluth, Nuclear Fusion 27, 527 (1987).

    Article  Google Scholar 

  14. L. Bracci & Fiorentini, Nature 297, 134 (1982).

    Article  Google Scholar 

  15. H. Takahashi and A. Moats, Atomkerenergie 43, 188 (1983).

    Google Scholar 

  16. S. Eliezer and Z. Henis, Phys. Lett. 131A, 361 (1988).

    Article  Google Scholar 

  17. H. Takahashi, in “Muon Catalyzed Fusion”, Ed. S. Jones, J. Rafelski, G. Hendrik, J. Monkhorst, AIP New York (1989).

    Google Scholar 

  18. S. Barnet and A.M. Lane, in “Muon Catalyzed Fusion”, Ed. S.E. Jones, J. Rafelski, G. Hendrik, J. Monkhorst, AIP New York (1989).

    Google Scholar 

  19. T. Tajiraa, S. Eliezer and R.M. Kulsrud, in “Muon Catalyzed Fusion” Ed. S.E. Jones, J. Rafelski, G. Hendrik, J. Monkhorst, AIP New York (1989).

    Google Scholar 

  20. (a) M. Leon and H.A. Bethe, Phys. Rev. 127, 637 (1962)

    Article  Google Scholar 

  21. (b) V.E. Markushin, Sov. Phys. JETP 53, 16 (1981).

    Google Scholar 

  22. M. Leon, Phys. Lett. 35B, 413 (1971).

    Article  Google Scholar 

  23. G. Kodoski and M. Leon, Nuovo Cimento 1B, 41 (1971).

    Article  Google Scholar 

  24. L.I. Menshikov and L.I. Ponomarev, JETP Lett. 39, 663, (1984).

    Google Scholar 

  25. S.E. Jones et al. Phys. Rev. Lett. 56, 558 (1986).

    Article  Google Scholar 

  26. B. Müller, S. Rafelski, M. Jandel, S.E. Jones, in “Muon Catalyzed Fusion” Ed. S.E. Jones, J. Rafelski, G. Hendrik, J. Monkhorst, AIP New York (1989).

    Google Scholar 

  27. L.I. Menshikov and L.I. Ponomarev, Z. Phys. D2, 1 (1986).

    Google Scholar 

  28. H.E. Rafelski, B. Miller, J. Rafelski, D. Trautman and R.D. Viollier preprint AZPH-TH/88-12 (1988) to appear in “Progress in Particle and Nuclear Physics”.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eliezer, S., Henis, Z. (1991). Laser Induced Transitions in Muon Catalyzed Fusion. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3804-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3804-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6696-6

  • Online ISBN: 978-1-4615-3804-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics