Skip to main content

Theory for Crossflow Microfiltration

  • Chapter
Membrane Handbook

Abstract

In this chapter, recent theories describing crossflow microfiltration behavior are presented. First, the use of macroscopic balances to describe the overall behavior of various microfiltration module configurations is briefly reviewed. A major portion of this chapter is then devoted to recent models that predict the steady-state and transient permeate flux for crossflow microfiltration. These models are summarized in a brief section that describes the predicted dependence of the permeate flux on the material properties of the suspensions and the operating conditions of the filter. The focus is on the use of microporous membranes, which accomplish the desired separation using the sieving mechanism of surface filtration. The ssumption is made that the membrane completely rejects the particles reaching its surface. The chapter concludes with a review of cross-flow filtration experiments and their comparison with theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altena, F. W., and G. Belfort. 1984. Lateral migration of spherical particles in porous flow channels: application to membrane filtration. Chem. Eng. Sci. 39(3):343–355.

    CAS  Google Scholar 

  • Baker, R. J., A. G. Fane, C. J. D. Fell, and B. H. Yoo. 1985. Factors affecting flux in crossflow filtration. Desalination 53:81–93.

    Article  CAS  Google Scholar 

  • Belfort, G. 1989. Fluid mechanics in membrane filtration: recent developments. J. Membr. Sci. 40:123–147.

    Article  CAS  Google Scholar 

  • Belfort, G., and N. Nagata. 1985. Fluid mechanics and cross-flow filtration: some thoughts. Desalination 53:57–79.

    Article  CAS  Google Scholar 

  • Belfort, G., R. J. Weigand, and J. T. Mahar. 1985. Particulate membrane fouling and recent developments in fluid mechanics of dilute suspensions. In ACS Symp. Ser. No. 281: Reverse Osmosis and Ultrafiltration ed. S. Sourirajan and T. Matsuura, pp. 383–401. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Blatt, W. F., A. Dravid, A. S. Michaels, and L. Nelson. 1970. Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques. In Membrane Science and Technology ed. J. E. Flinn, pp. 47–97. New York: Plenum Press.

    Chapter  Google Scholar 

  • Brady, J. F., and G. Bossis. 1988. Stokesian dynamics. Ann. Rev. Fluid Mech. 20:111–158.

    Article  Google Scholar 

  • Brown, C. E., M. P. Tulin, and P. Van Dyke. 1971. On the gelling of high molecular weight impermeable solutes during ultrafiltration. Chem. Eng. Prog. Symp. Ser. 67(114):174–180.

    CAS  Google Scholar 

  • Chandavarkar, A., and C. L. Cooney. 1989. Dynamics of flux decline during microfiltration caused by protein-membrane interactions. Paper read at 198th National Meeting of the American Chemical Society, 10–15 September 1989, Miami Beach, FL.

    Google Scholar 

  • Cox, R. G., and H. Brenner. 1968. The lateral migration of solid particles in Poiseuille flow-I theory. Chem. Eng. Sci. 23:147–173.

    Article  Google Scholar 

  • Davis, R. H., and S. A. Birdsell. 1987. Hydrodynamic model and experiments for cross-flow microfiltration. Chem. Eng. Commun. 49:217–234.

    Article  CAS  Google Scholar 

  • Davis, R. H., and D. T. Leighton. 1987. Shear-induced transport of a particle layer along a porous wall. Chem. Eng. Sci. 42:275–281.

    Article  CAS  Google Scholar 

  • Davis, R. H., and J. D. Sherwood. 1990. A similarity solution for steady-state crossflow microfiltration. Chem. Eng. Sci. 45:3203–3209.

    Article  CAS  Google Scholar 

  • Drew, D. A., J. A. Schonberg, and G. Belfort. 1991. Lateral inertial migration of a small sphere in fast laminar flow through a membrane duct. Chem. Eng. Sci. 46:3219–3224.

    Article  CAS  Google Scholar 

  • Eckstein, E. C., P. G. Bailey, and A. H. Shapiro. 1977. Self-diffusion of particles in shear flow of a suspension. J. Fluid Mech. 79:191–208.

    Article  Google Scholar 

  • Errede, L. A. 1984. Effect of organic anion adsorption on water permeability of microporous membranes. J. Colloids. Interface Sci. 100:414–422.

    Article  CAS  Google Scholar 

  • Fane, A. G. 1986. Ultrafiltration: factors influencing flux and rejection. In Progress in Filtration and Separation ed. R. J. Wakeman, Vol. IV, pp. 101–79. New York: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Green, G., and G. Belfort. 1980. Fouling of ultrafiltration membranes: lateral migration and the particle trajectory model. Desalination 35:129–147.

    Article  CAS  Google Scholar 

  • Henry, J. D. 1972. Cross flow filtration. In Recent Developments in Separation Science ed. N. N. Li, Vol. 2, pp. 205–225. Boca Raton. FL: CRC Press.

    Google Scholar 

  • Ho, B. P., and L. G. Leal. 1974. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65:365–400.

    Article  Google Scholar 

  • Ishii, K., and H. Hasimoto. 1980. Lateral migration of a spherical particle in flows in a circular tube. J. Phys. Soc. Japan 48:2144–2153.

    Article  CAS  Google Scholar 

  • Kraus, K. A. 1974. Cross-flow filtration and axial filtration. In Proceedings of the 29th Industrial Waste Conference 7–9 May 1974, Purdue University, West Lafayette, IN, p. 1059.

    Google Scholar 

  • Leighton, D. T., and A. Acrivos. 1987a. Measurement of the shear induced coefficient of self-diffusion in concentrated suspensions of spheres. J. Fluid Mech. 177:109–131.

    Article  CAS  Google Scholar 

  • Leighton, D. T., and A. Acrivos. 1987b. The shear-induced migration of particles in concentrated suspension. J. Fluid Mech. 181:415–439.

    Article  CAS  Google Scholar 

  • Leonard, E. F., and C. S. Vassilieff. 1984. The deposition of rejected matter in membrane separation processes. Chem. Eng. Commun. 30:209–217.

    Article  CAS  Google Scholar 

  • Madsen, R. E. 1977. Hyperfiltration and Ultrafiltration in Plate-and-Frame Systems. New York: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Ofsthun, N. J. 1989. Crossflow Membrane Filtration of Cell Suspensions Ph.D. thesis, Massachusetts Institute of Technology, Chemical Engineering Department, Cambridge, MA.

    Google Scholar 

  • Ofsthun, N. J., and C. K. Colton. 1987. Visual evidence of concentration polarization in cross-flow membrane plasmapheresis. Am. Soc. Artif. Intern. Organs J. 10:510–517.

    Google Scholar 

  • Otis, J. R., F. W. Altena, J. T. Mahar, and G. Belfort. 1986. Measurement of single spherical particle trajectories with lateral migration in a slit with a porous wall under laminar flow conditions. Expl. Fluids 4:1–10.

    Article  CAS  Google Scholar 

  • Petzny, W. J., and J. A. Quinn. 1969. Calibrated membranes with coated pore walls. Science 166:751–753.

    Article  CAS  Google Scholar 

  • Porter, M. C. 1972a. Concentration polarization with membrane ultrafiltration. Ind. Eng. Chem. Prod. Res. Dev. 11:233–248.

    Article  Google Scholar 

  • Porter, M. C. 1972b. Ultrafiltration of colloidal suspensions. In Recent Advances in Separation Techniques AIChE Symp. Ser. No. 120 pp. 21–30. New York: American Institute of Chemical Engineers.

    Google Scholar 

  • Porter, M. C. 1977. What, when, and why of membranes-MF, OF and RO. In What the Filter Man Needs to Know About Filtration AIChE Symp. Ser. No. 171 ed. W. Shoemaker, pp. 83–103. New York: American Institute of Chemical Engineers.

    Google Scholar 

  • Porter, M. C. 1986. Microfiltration. In Synthetic Membranes: Science Engineering and Applications ed. P. M. Bungay, H. K. Lonsdale, and M. N. de Pinho, pp. 225–246. Dordrecht: D. Reidel Publishing Co.

    Chapter  Google Scholar 

  • Rautenbach, R., and G. Schock. 1988. Ultrafiltration of macromolecular solutions and cross-flow microfiltration of colloidal suspensions. A contribution to permeate flux calculations. J. Membr. Sci. 36:231–242.

    Article  CAS  Google Scholar 

  • Romero, C. A. 1989. Modeling and laboratory observations of shear induced hydrodynamic diffusion in crossflow microfiltration, Ph.D. thesis, Univ. of Colorado, Chemical Engineering Department, Boulder, CO.

    Google Scholar 

  • Romero, C. A., And R. H. Davis. 1988. Global model of crossflow microfiltration based on hydrodynamic particle diffusion. J. Membr. Sci. 39:157–185.

    Article  CAS  Google Scholar 

  • Romero, C. A., and R. H. Davis. 1990. Transient model of crossflow microfiltration. Chem. Eng. Sci. 45:13–25.

    Article  CAS  Google Scholar 

  • Romero, C. A., and R. H. Davis. 1991. Experimental verification of the shear-induced hydrodynamic diffusion model of crossflow microfiltration. J. Membr. Sci. 62:249–273.

    Article  CAS  Google Scholar 

  • Schneider, K., and W. Klein. 1982. The concentration of suspensions by means of crossflowmicrofiltration. Desalination 41:263–275.

    Article  CAS  Google Scholar 

  • Schonberg, J. A., and E. J. Hinch. 1989. Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203:517–524.

    Article  CAS  Google Scholar 

  • Shen, J. J. S., and R. F. Probstein. 1977. On the prediction of limiting flux in laminar ultrafiltration of macromolecular solutions. Ind. Eng. Chem. Fundam. 16:459–465.

    Article  CAS  Google Scholar 

  • Trettin, D. R., and M. R. Doshi, 1980. Limiting flux in ultrafiltration of macromolecular solutions. Chem. Eng. Commun. 4:507–522.

    Article  CAS  Google Scholar 

  • Vasseur, P., and R. G. Cox. 1976. Lateral migration of spherical particles in two-dimensional shear flow. J. Fluid Mech. 78(2):385–413.

    Article  Google Scholar 

  • Weigand, R. J., F. W. Altena, and G. Belfort. 1985. Lateral migration of spherical particles in laminar porous tube flows: application to membrane filtration. Phys. Chem. Hydrodyn. 6:393–413.

    CAS  Google Scholar 

  • Zahka, J., and T. J. Leahy. 1985. Practical aspects of tangential flow filtration in cell separations. ACS Symp. Ser. No. 172-Purification of Fermentation Products pp. 51–69. Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Zydney, A. L. 1985. Crossflow plasmapheresis: an analysis of flux and hemolysis, Ph.D. thesis, Massachusetts Institute of Technology, Chemical Engineering Department, Cambridge, MA.

    Google Scholar 

  • Zydney, A. L., and C. K. Colton. 1986. A concentration polarization model for the filtrate flux in crossflow microfiltration of particulate suspensions. Chem. Eng. Commun. 47:1–21.

    Article  CAS  Google Scholar 

  • Zydney, A. L., and C. K. Colton. 1987. Fundamental studies and design analysis for cross-flow membrane plasmapheresis. In Artificial Organs: Proceedings of International Symposium on Artificial Organs Biomedical Engineering and Transplantation ed. J. D. Andrade et al., pp. 343–358. New York: VCH Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, R.H. (1992). Theory for Crossflow Microfiltration. In: Ho, W.S.W., Sirkar, K.K. (eds) Membrane Handbook. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3548-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3548-5_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6575-4

  • Online ISBN: 978-1-4615-3548-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics